During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and...During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.展开更多
The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled l...The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.展开更多
Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,...Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.展开更多
Significance of body material and temperature variation on burning time and burning rate of Si/Pb O/Pb_3O_4/FG and B/BaCrO_4/FG pyrotechnic delay compositions were experimentally studied. Brass and stainless steel wer...Significance of body material and temperature variation on burning time and burning rate of Si/Pb O/Pb_3O_4/FG and B/BaCrO_4/FG pyrotechnic delay compositions were experimentally studied. Brass and stainless steel were used as delay body materials. High resolution oscilloscope and a customized chronometer were simultaneously used for the measurement of burning time and burning rate. Results reveal that brass material with controlled column dimensions reduced the variation in burning time of Si/Pb O/Pb_3O_4/FG delay mixture from 7.43% to 4.17% and that of B/Ba CrO_4/FG mixture from 16.83% to 9.39%.Similarly the variation in burning rate was reduced from 7.57% to 4.12% and from 17% to 9.69% for Si/Pb O/Pb_3O_4/FG and B/BaCrO_4/FG mixtures respectively. Si/PbO/Pb_3O_4/FG delay mixture was also subjected to temperature ranging from -54℃ up to+100℃. The burning rate of this composition varied linearly with temperature. Burning rate increased from 28.01 mm/s to 34.38 mm/s when the temperature was varied from -54℃ to +100℃.展开更多
The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile...The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.展开更多
The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed ...The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed in CH_(4)/CO_(2)/Air flames with various CO_(2) doping ratio under equivalence ratios of 1.0–1.4.GRI 3.0 mech and Aramco mech are employed for predicting LBV,adiabatic flame temperature(AFT),important intermediate radicals(CH_(3),H,OH,O)and NO_(x) emissions(NO,NO_(2),N2O),as well as the sensitivity analysis is also conducted.The detail analysis of experiment and simulation reveals that as the CO_(2) addition increases from 0%to 40%,the LBVs and AFTs decrease monotonously.Under the same CO_(2) doping ratio,the LBVs and AFTs increase first and then decrease with the increase of equivalence ratio,and the maximum of LBV is reached at equivalence ratio of 1.05.The mole fraction tendency of important intermediates and NO_(x) with equivalence ratio and CO_(2) doping ratio are similar to the LBVs and AFTs.Reaction H+O_(2)⇔O+OH is found to be responsible for the promotion of the generation of important intermediates and NO_(x) under the equivalence ratios and CO_(2) addition through sensitivity analysis.The sensitivity coefficients of elementary reactions that the increasing of CO_(2) doping ratio promotes or inhibits formation of intermediate radicals and NO_(x) decreases.展开更多
Strain rate sensitivity and tension/compression asymmetry of AZ31 magnesium alloy at different temperatures and strainrates were investigated.Both of mechanical behaviors are temperature dependent.Strain rate sensitiv...Strain rate sensitivity and tension/compression asymmetry of AZ31 magnesium alloy at different temperatures and strainrates were investigated.Both of mechanical behaviors are temperature dependent.Strain rate sensitivity increases with increasingtemperature.Thermally activated slip is the source of strain rate sensitivity.At the temperature below or near 373 K,strain ratesensitivity is very little.Tension/compression asymmetry in yielding decreases with increasing temperature.Twinning is the reasonof tension/compression asymmetry.At the temperature above or near 573 K,the material shows little tension/compressionasymmetry of the flow stress.展开更多
Using photo-thermo sensitive genie male rice (PTGMS) Pei' ai 64S, W7415S, W6154S, N26S, Annong S, Nongken 58S, 7001S and 5088S as female parents and conventional indica lines 8258 and U89 as male parents, the fact...Using photo-thermo sensitive genie male rice (PTGMS) Pei' ai 64S, W7415S, W6154S, N26S, Annong S, Nongken 58S, 7001S and 5088S as female parents and conventional indica lines 8258 and U89 as male parents, the factors affecting outcrossed seed-setting were analyzed. The PTGMS had obstacles in outcrossed seed setting influenced by inheritance and environment at varying degrees. Environmental temperature was regarded as the main factor that resulted in the outcrossed seed-setting obstacles. The sensitive stage was at the early stage of grain filling for outcrossed seed setting. There existed remarkable differences at the sensitivity stage, the duration of sensitive period, the sensitive level and the effective level of outcrossed seed-setting obstacles caused by environmental temperature among different PTGMS lines. Therefore, attention should be paid to outcrossed seed-setting obstacles in selection and utilization of PTGMS lines.展开更多
The effects of various hydrogen contents on the flow stress(σ),strain rate sensitivity expo- nent(m)and the tensile elongation(δ)of Ti-6Al-4V alloy were studied.The microstructure of the alloy was also investigated....The effects of various hydrogen contents on the flow stress(σ),strain rate sensitivity expo- nent(m)and the tensile elongation(δ)of Ti-6Al-4V alloy were studied.The microstructure of the alloy was also investigated.The results indicate that,a suitable amount of hydrogen in the alloy can reduce the flow stress in the temperature range 800—860℃. Consequently,the superplastic temperature can be decreased and the ductility improved.展开更多
Inorganic nitrogen(N)loss through sediment N mineralization is important for eutrophication surrounding riparian zone.Sediment physicochemical properties have been changed at water-level elevation in riparian zone of ...Inorganic nitrogen(N)loss through sediment N mineralization is important for eutrophication surrounding riparian zone.Sediment physicochemical properties have been changed at water-level elevation in riparian zone of the Three Gorges Reservoir(TGR)due to differences in hydrological stress and human activity intensity.However,spatial distribution and driving factor of net N mineralization rate(Nmin)and its temperature sensitivity(Q10)based on the changes in sediment physicochemical properties are still unclear at waterlevel elevation in the riparian zone.A total of 132 sediment samples in the riparian zone were collected including 11 transections and 12 water-level elevations on basin scale of the TGR during drying period,to conduct a 28-day incubation at 15℃,22℃,29℃and 36℃.Nmin,total N(TN)and substrate quality(SQ)increased with water-level elevation,while Q10 showed an opposite trend(P<0.001).Results of the structural equation model showed that water-level elevation had direct positive effects on TN and SQ(P<0.01).In addition,TN was the major factor that had a direct positive effect on Nmin,and SQ was the crucial factor that had a direct negative effect on Q10(P<0.001).In conclusion,increases in TN and SQ were major driving factors of Nmin and its Q10 at water-level elevation,respectively,in riparian zone of the TGR during drying period.展开更多
The dynamic tensile behaviors of a newly developed Ti-6 Al-2 Sn-2 Zr-3 Mo-1 Cr-2 Nb-Si alloy(referred as TC21 in China) over a wide range of strain rates from quasi-static to dynamic regimes(0.001-1 200 s-1) at diff...The dynamic tensile behaviors of a newly developed Ti-6 Al-2 Sn-2 Zr-3 Mo-1 Cr-2 Nb-Si alloy(referred as TC21 in China) over a wide range of strain rates from quasi-static to dynamic regimes(0.001-1 200 s-1) at different temperatures were experimentally investigated. A split Hopkinson tension bar apparatus and a static material testing system were utilized to study the stress-strain responses under uniaxial tension loading condition. The experimental results indicate that the tensile behavior of TC21 titanium alloy is dependent on the strain rate and temperature. The values of initial yield stress increase with increasing strain rate and decreasing temperature. The effects of strain rate and temperature on the initial yield behavior are estimated by introducing two sensitivity parameters. The phenomenological-based constitutive model, Johnson-Cook model, is suitably modified to describe the rate-temperature dependent constitutive behavior of TC21 titanium alloy. It is observed that the modified model is in good agreement with the experimental data subjected to the investigated range of strain rates and temperatures.展开更多
基金supported by 111 Project (No.D21025)Open Fund Project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Nos.PLN2021-01,PLN2021-02,PLN2021-03)+2 种基金High-end Foreign Expert Introduction Program (No.G2021036005L)National Key Research and Development Program (No.2021YFC2800903)National Natural Science Foundation of China (No.U20B6005-05)。
文摘During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532261 and 1630141)
文摘The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.
基金Projects(11272267,11102168,10932008)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by Northwestern Polytechnical University
文摘Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.
文摘Significance of body material and temperature variation on burning time and burning rate of Si/Pb O/Pb_3O_4/FG and B/BaCrO_4/FG pyrotechnic delay compositions were experimentally studied. Brass and stainless steel were used as delay body materials. High resolution oscilloscope and a customized chronometer were simultaneously used for the measurement of burning time and burning rate. Results reveal that brass material with controlled column dimensions reduced the variation in burning time of Si/Pb O/Pb_3O_4/FG delay mixture from 7.43% to 4.17% and that of B/Ba CrO_4/FG mixture from 16.83% to 9.39%.Similarly the variation in burning rate was reduced from 7.57% to 4.12% and from 17% to 9.69% for Si/Pb O/Pb_3O_4/FG and B/BaCrO_4/FG mixtures respectively. Si/PbO/Pb_3O_4/FG delay mixture was also subjected to temperature ranging from -54℃ up to+100℃. The burning rate of this composition varied linearly with temperature. Burning rate increased from 28.01 mm/s to 34.38 mm/s when the temperature was varied from -54℃ to +100℃.
基金We would like to acknowledge the Sao Paulo Research Foundation(FAPESP)(Grant No.2014/15091-7 and 2016/10997-0)the Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil(CNPq)(Grant No.449009/2014-9)This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil(CAPES)-Finance Code 001.Danielle Cristina Camilo MAGALHÃES acknowledges CNPq for her PhD scholarship(Grant No.153181/2013-3).
文摘The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.
基金The authors would like to thank the National Natural Science Foundation of China(52176095)Anhui Provincial Natural Science Foundation(2008085J25)the Project of support program for outstanding young people in Colleges and Universities(gxyqZD201830)for their financial support of this study.
文摘The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed in CH_(4)/CO_(2)/Air flames with various CO_(2) doping ratio under equivalence ratios of 1.0–1.4.GRI 3.0 mech and Aramco mech are employed for predicting LBV,adiabatic flame temperature(AFT),important intermediate radicals(CH_(3),H,OH,O)and NO_(x) emissions(NO,NO_(2),N2O),as well as the sensitivity analysis is also conducted.The detail analysis of experiment and simulation reveals that as the CO_(2) addition increases from 0%to 40%,the LBVs and AFTs decrease monotonously.Under the same CO_(2) doping ratio,the LBVs and AFTs increase first and then decrease with the increase of equivalence ratio,and the maximum of LBV is reached at equivalence ratio of 1.05.The mole fraction tendency of important intermediates and NO_(x) with equivalence ratio and CO_(2) doping ratio are similar to the LBVs and AFTs.Reaction H+O_(2)⇔O+OH is found to be responsible for the promotion of the generation of important intermediates and NO_(x) under the equivalence ratios and CO_(2) addition through sensitivity analysis.The sensitivity coefficients of elementary reactions that the increasing of CO_(2) doping ratio promotes or inhibits formation of intermediate radicals and NO_(x) decreases.
文摘Strain rate sensitivity and tension/compression asymmetry of AZ31 magnesium alloy at different temperatures and strainrates were investigated.Both of mechanical behaviors are temperature dependent.Strain rate sensitivity increases with increasingtemperature.Thermally activated slip is the source of strain rate sensitivity.At the temperature below or near 373 K,strain ratesensitivity is very little.Tension/compression asymmetry in yielding decreases with increasing temperature.Twinning is the reasonof tension/compression asymmetry.At the temperature above or near 573 K,the material shows little tension/compressionasymmetry of the flow stress.
文摘Using photo-thermo sensitive genie male rice (PTGMS) Pei' ai 64S, W7415S, W6154S, N26S, Annong S, Nongken 58S, 7001S and 5088S as female parents and conventional indica lines 8258 and U89 as male parents, the factors affecting outcrossed seed-setting were analyzed. The PTGMS had obstacles in outcrossed seed setting influenced by inheritance and environment at varying degrees. Environmental temperature was regarded as the main factor that resulted in the outcrossed seed-setting obstacles. The sensitive stage was at the early stage of grain filling for outcrossed seed setting. There existed remarkable differences at the sensitivity stage, the duration of sensitive period, the sensitive level and the effective level of outcrossed seed-setting obstacles caused by environmental temperature among different PTGMS lines. Therefore, attention should be paid to outcrossed seed-setting obstacles in selection and utilization of PTGMS lines.
文摘The effects of various hydrogen contents on the flow stress(σ),strain rate sensitivity expo- nent(m)and the tensile elongation(δ)of Ti-6Al-4V alloy were studied.The microstructure of the alloy was also investigated.The results indicate that,a suitable amount of hydrogen in the alloy can reduce the flow stress in the temperature range 800—860℃. Consequently,the superplastic temperature can be decreased and the ductility improved.
基金supported by the Program of Chongqing Science and Technology Commission(cstc2020jcyj-msxmX0095)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZDK202001203,KJZD-K202003501)the Innovative Research Group of Universities in Chongqing(CXQT P19037).
文摘Inorganic nitrogen(N)loss through sediment N mineralization is important for eutrophication surrounding riparian zone.Sediment physicochemical properties have been changed at water-level elevation in riparian zone of the Three Gorges Reservoir(TGR)due to differences in hydrological stress and human activity intensity.However,spatial distribution and driving factor of net N mineralization rate(Nmin)and its temperature sensitivity(Q10)based on the changes in sediment physicochemical properties are still unclear at waterlevel elevation in the riparian zone.A total of 132 sediment samples in the riparian zone were collected including 11 transections and 12 water-level elevations on basin scale of the TGR during drying period,to conduct a 28-day incubation at 15℃,22℃,29℃and 36℃.Nmin,total N(TN)and substrate quality(SQ)increased with water-level elevation,while Q10 showed an opposite trend(P<0.001).Results of the structural equation model showed that water-level elevation had direct positive effects on TN and SQ(P<0.01).In addition,TN was the major factor that had a direct positive effect on Nmin,and SQ was the crucial factor that had a direct negative effect on Q10(P<0.001).In conclusion,increases in TN and SQ were major driving factors of Nmin and its Q10 at water-level elevation,respectively,in riparian zone of the TGR during drying period.
基金Funded by the National Natural Science Foundation of China Academy of Engineering Physics and Jointly Set up “NSAF” Joint Fund(No.U1430119)
文摘The dynamic tensile behaviors of a newly developed Ti-6 Al-2 Sn-2 Zr-3 Mo-1 Cr-2 Nb-Si alloy(referred as TC21 in China) over a wide range of strain rates from quasi-static to dynamic regimes(0.001-1 200 s-1) at different temperatures were experimentally investigated. A split Hopkinson tension bar apparatus and a static material testing system were utilized to study the stress-strain responses under uniaxial tension loading condition. The experimental results indicate that the tensile behavior of TC21 titanium alloy is dependent on the strain rate and temperature. The values of initial yield stress increase with increasing strain rate and decreasing temperature. The effects of strain rate and temperature on the initial yield behavior are estimated by introducing two sensitivity parameters. The phenomenological-based constitutive model, Johnson-Cook model, is suitably modified to describe the rate-temperature dependent constitutive behavior of TC21 titanium alloy. It is observed that the modified model is in good agreement with the experimental data subjected to the investigated range of strain rates and temperatures.