期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
FACTORS AFFECTING SOIL RESPIRATION IN REFERENCE WITH TEMPERATURE'S ROLE IN THE GLOBAL SCALE 被引量:4
1
作者 方精云 刘绍辉 赵坤 《Chinese Geographical Science》 SCIE CSCD 1998年第3期55-64,共0页
Soil respiration is CO 2 evolution process from soil to atmosphere, mainly produced by soil micro organism and plant roots. It is affected not only by biological factors (vegetation, micro organism, etc.) and envir... Soil respiration is CO 2 evolution process from soil to atmosphere, mainly produced by soil micro organism and plant roots. It is affected not only by biological factors (vegetation, micro organism, etc.) and environmental factors (temperature, moisture, pH, etc.), but also more and more strongly by man made factors. Based on literature survey, main factors affecting soil respiration were reviewed. The relationships of soil respiration to latitude and to mean annual temperature were analyzed by using the data measured from forest vegetation in the world. As a result, soil respiration rate decreased exponentially with an increase of latitude, and increased with increasing temperature. Following the relationship between soil respiration and temperature, Q 10 value (law of Van Hoff) was obtained as 1.57 in the global scale. 展开更多
关键词 effect FACTORS q 10 value LATITUDE soil respiration temperature
下载PDF
Influence of organic matter input and temperature change on soil aggregate-associated respiration and microbial carbon use efficiency in alpine agricultural soils
2
作者 Shuaiwen Zhang Wei Gong +6 位作者 Xin Wan Junya Li Zhiguo Li Peng Chen Shunlin Xing Ziyan Li Yi Liu 《Soil Ecology Letters》 CSCD 2024年第3期177-188,共12页
Understanding the dynamics of soil respiration,microbial carbon use efficiency(CUE),and temperature sensitivity(Q_(10))in response to exogenous organic matter(EOM)input,soil aggregate size,and incubation temperature i... Understanding the dynamics of soil respiration,microbial carbon use efficiency(CUE),and temperature sensitivity(Q_(10))in response to exogenous organic matter(EOM)input,soil aggregate size,and incubation temperature is crucial for predicting soil carbon cycling responses to environmental changes.In this study,these interactions were investigated by 180-day incubation of soil aggregates supplemented with EOM at various temperatures(5°C,15°C and 25°C).The results reveal an‘L-shaped’trend in soil respiration on the time scale across all treatments,characterized by initial rapid declines followed by stability.EOM input and higher temperatures significantly enhance respiration rates.Notably,the respiratory rates of soil aggregates of different sizes exhibit distinct patterns based on the presence or absence of EOM.Under conditions without the addition of EOM,larger aggregates show relatively lower respiration rates.Conversely,in the presence of EOM,larger aggregates exhibit higher respiratory rates.Furthermore,Q_(10)decreases with increasing aggregate size.The relationship between Q_(10)and the substrate quality index(SQI)supports the carbon quality temperature(CQT)hypothesis,highlighting SQI’s influence on Q_(10)values,particularly during later incubation stages.Microbial CUE decreases with EOM input and rising temperatures.Meanwhile,aggregate size plays a role in microbial CUE,with smaller aggregates exhibiting higher CUE due to enhanced nutrient availability.In conclusion,the intricate interplay of EOM input,aggregate size,and temperature significantly shapes soil respiration,microbial CUE,and Q_(10).These findings underscore the complexity of these interactions and their importance in modeling soil carbon dynamics under changing environmental conditions. 展开更多
关键词 soil aggregates soil respiration temperature sensitivity Tibetan Plateau
原文传递
Comparing the temperature sensitivity of organic matter decomposition in oxic and oxygen-deprived soils
3
作者 Zhenhui Jiang Xin Wang +1 位作者 Ting Liu Xiaojuan Feng 《Soil Ecology Letters》 CSCD 2024年第1期29-32,共4页
No consistent variation was found in soil respiration Q10 under various O2 conditions.Substrate C quality had a strong effect on Q10 in oxic soils.N limitation had a large impact on Q10 in soils under O2 limitation.Cu... No consistent variation was found in soil respiration Q10 under various O2 conditions.Substrate C quality had a strong effect on Q10 in oxic soils.N limitation had a large impact on Q10 in soils under O2 limitation.Current studies on the temperature sensitivity(Q10)of soil organic matter(SOM)decomposition mainly focus on aerobic conditions.However,varia-tions and determinants of Q10 in oxygen(O2)-deprived soils remain unclear.Here we incubated three grassland soils under oxic,suboxic,and anoxic conditions subjected to varying temperatures to compare variations in Q10 in relation to changing substrates.No consistent variation was found in Q10 under various O2 conditions.Further analysis of edaphic properties demon-strated that substrate carbon quality showed a strong influence on Q10 in oxic soils,whereas nitrogen limitation played a more important role in suboxic and anoxic soils.These results suggest that substrate carbon quality and nitrogen limitation may play roles of varying importance in determining the temperature sensitivity of SOM decomposition under various O2 conditions. 展开更多
关键词 oxygen-limited conditions temperature sensitivity soil respiration carbon substrate nitrogen limitation
原文传递
Effects of Enhanced UV-B Radiation on Soil Respiration of Barley Field 被引量:1
4
作者 张富存 江晓东 《Meteorological and Environmental Research》 CAS 2010年第6期39-41,共3页
[Objective] The aim was to investigate the changing characteristics of soil respiration in clear day with enhanced UV-B radiation and in cloudy day without external UV-B radiation forcing.[Methods] Based on measuring ... [Objective] The aim was to investigate the changing characteristics of soil respiration in clear day with enhanced UV-B radiation and in cloudy day without external UV-B radiation forcing.[Methods] Based on measuring soil respiration rate of barley field at jointing stage in typical clear day and cloudy day by means of Li-8100,the effects of enhanced UV-B radiation by 20% on soil respiration rate were studied. [Results] The results showed that enhanced UV-B radiation inhibited soil respiration of barley field obviously. In clear day,the average soil respiration rate of normal barley field(B) was 1.02 μmol/(m2·s) higher than that of barley field with the enhanced UV-B radiation by 20%(BU) . For cloudy day,the average soil respiration rate of B treatment was 0.71 μmol/(m2·s) lower than BU treatment without external UV-B radiation forcing. In clear day,UV-B radiation rise resulted into the decrease of Q10 value of soil respiration in barley field,but there was an increase in cloudy day without external UV-B radiation forcing,leading to various changes of soil respiration rate. [Conclusions] Supplemental UV-B radiation could inhibit soil respiration rate of barley filed significantly,thus affected the increase of crop yield. 展开更多
关键词 UV-B Barley field soil respiration q10 value China
下载PDF
Diurnal and Seasonal Dynamics of Soil Respiration at Temperate Leymus Chinensis Meadow Steppes in Western Songnen Plain, China 被引量:17
5
作者 WANG Ming LIU Xingtu +4 位作者 ZHANG Jitao LI Xiujun WANG Guodong LI Xiaoyu LU Xinrui 《Chinese Geographical Science》 SCIE CSCD 2014年第3期287-296,共10页
To evaluate the diurnal and seasonal variations in soil respiration (Rs) and understand the controlling factors, we measured carbon dioxide (CO2) fluxes and their environmental variables using a LI-6400 soil CO2 f... To evaluate the diurnal and seasonal variations in soil respiration (Rs) and understand the controlling factors, we measured carbon dioxide (CO2) fluxes and their environmental variables using a LI-6400 soil CO2 flux system at a temperate Leymus chinensis meadow steppe in the western Songnen Plain of China in the growing season (May-October) in 2011 and 2012. The diurnal patterns of soil respiration could be expressed as single peak curves, reaching to the maximum at 11:00-15:00 and falling to the minimum at 21:00-23:00 (or before dawn). The time-window between 7:00 and 9:00 could be used as the optimal measuring time to represent the daily mean soil CO2 efflux. In the growing season, the daily value of soil CO2 efflux was moderate in late spring (1.06-2.51μnol/(m2.s) in May), increased sharply and presented a peak in summer (2.95-3.94 μmol/(m2.s) in July), and then decreased in autumn (0.74-0.97 μmol/(m2.s) in October). Soil temperature (Ts) exerted dominant control on the diurnal and seasonal variations of soil respiration. The temperature sensitivity of soil respiration (Q10) exhibited a large seasonal variation, ranging from 1.35 to 3.32, and decreased with an increasing soil temperature. Rs gradually increased with increasing soil water content (Ws) and tended to decrease when Ws exceeded the optimum water content (27%) of Rs. The Ts and Ws had a confounding effect on Rs, and the two-variable equations could account for 72% of the variation in soil respiration (p 〈 0.01). 展开更多
关键词 soil respiration Leymus chinensis temperature sensitivity of soil respiration (q10) soil temperature soil water content
下载PDF
Short-term effects of nitrogen deposition on soil respiration components in two alpine coniferous forests, southeastern Tibetan Plateau 被引量:7
6
作者 Jian Wang Genxu Wang +2 位作者 Yu Fu Xiaopeng Chen Xiaoyan Song 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1029-1041,共13页
Nitrogen (N) deposition to alpine forest ecosystems is increasing gradually, yet previous studies have seldom reported the effects of N inputs on soil CO2 flux in these ecosystems. Evaluating the effects of soil respi... Nitrogen (N) deposition to alpine forest ecosystems is increasing gradually, yet previous studies have seldom reported the effects of N inputs on soil CO2 flux in these ecosystems. Evaluating the effects of soil respiration on N addition is of great significance for understanding soil carbon (C) budgets along N gradients in forest ecosystems. In this study, four levels of N (0, 50, 100, 150 kg N ha^-1 a^-1) were added to soil in a Picea baifouriana and an Abies georgei natural forest on the Tibetan Plateau to investigate the effect of the N inputs on soil respiration. N addition stimulated total soil respiration (Rt) and its components including heterotrophic respiration (Rh) and autotrophic respiration (Ra);however, the promoted effects declined with an increase in N application in two coniferous forests. Soil respiration rate was a little greater in the spruce forest (1.05 μmol CO2 m^-2 s^-1) than that in the fir forest (0.97 μmol CO2 m^-2 s^-1). A repeated measures ANOVA indicated that N fertilization had significant effects on Rt and its components in the spruce forest and Rt in the fir forest, but had no obvious effect on Rh or Ra in the fir forest. Rt and its components had significant exponential relationships with soil temperature in both forests. N addition also increased temperature sensitivity (Q10) of Rt and its components in the two coniferous forests, but the promotion declined as N in put increased. Important, soil moisture had great effects on Rt and its components in the spruce forest (P<0.05), but no obvious impacts were observed in the fir forest (P>0.05). Following N fertilization, Ra was significantly and positively related to fine root biomass, while Rh was related to soil enzymatic activities in both forests. The mechanisms underlying the effect of simulated N deposition on soil respiration and its components in this study may help in forecasting C cycling in alpine forests under future levels of reactive N deposition. 展开更多
关键词 N addition HETEROTROPHIC soil respiration AUTOTROPHIC soil respiration q10 ALPINE forest ECOSYSTEM
下载PDF
The effect of fire disturbance on short-term soil respiration in typical forest of Greater Xing'an Range, China 被引量:11
7
作者 Long Sun Tongxin Hu +4 位作者 Ji Hong Kim Futao Guo Hong Song Xinshuang Lv Haiqing Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第3期613-620,共8页
We investigated the effect of fire disturbance on short-term soil respiration in birch (Betula platyphylla Suk.) and larch (Larix gmelinii Rupr.) forests in Greater Xing’an range, northeastern China for further u... We investigated the effect of fire disturbance on short-term soil respiration in birch (Betula platyphylla Suk.) and larch (Larix gmelinii Rupr.) forests in Greater Xing’an range, northeastern China for further understanding of its effect on the carbon cycle in ecosystems. Our study show that post-fire soil respiration rates in B. platyphylla and L. gmelinii forests were reduced by 14%and 10%, respectively. In contrast, the soil heterotrophic respiration rates in the two types of forest were similar in post-fire and control plots. After fire, the contribution of root respiration to total soil respiration was dramatically reduced. Variation in soil respiration rates was explained by soil moisture (W) and soil tem-perature (T) at a depth of 5 cm. Exponential regression fitted T and W models explained Rs rates in B. platyphylla control and post-fire plots (83.1% and 86.2%) and L. gmelinii control and post-fire plots (83.7%and 88.7%). In addition, the short-term temperature coefficients in B. 展开更多
关键词 fire disturbance short-term soil respiration environmentfactors q10
下载PDF
Contribution of aboveground litter to soil respiration in Populus davidiana Dode plantations at different stand ages 被引量:5
8
作者 ZHAO Xin LI Fa-dong +1 位作者 ZHANG Wan-jun AI Zhi-pin 《Journal of Mountain Science》 SCIE CSCD 2016年第6期1000-1012,共13页
Soil respiration from decomposing aboveground litter is a major component of the terrestrial carbon cycle. However, variations in the contribution of aboveground litter to the total soil respiration for stands of vary... Soil respiration from decomposing aboveground litter is a major component of the terrestrial carbon cycle. However, variations in the contribution of aboveground litter to the total soil respiration for stands of varying ages are poorly understood. To assess soil respiration induced by aboveground litter, treatments of litter and no litter were applied to 5-, l0-, and 20-year-old stands of Populus davidiana Dode in the sandstorm source area of Beijing-Tianjin, equations were applied to China. Optimal nonlinear model the combined effects of soil temperature and soil water content on soil respiration. Results showed that the monthly average contribution of aboveground litter to total soil respiration were 18.46% ± 4.63%, 16.64% ± 9.31%, and 22.37% ± 8.17% for 5-, 10-, and ao-year-old stands, respectively. The relatively high contribution in 5- and 20-year-old stands could be attributed to easily decomposition products and high accumulated litter, resoectivelv. Also. it fluctuated monthly for all stand ages due to substrate availability caused by phenology and environmental factors. Litter removal significantly decreased soil respiration and soil water content for all stand ages (P 〈 0.05) but not soil temperature (P 〉 0.05). Variations of soil respiration could be explained by soil temperature at 5-cm depth using an exponential equation and by soil water content at lo-cm depth using a quadratic equation, whereas soil respiration was better modeled using the combined parameters of soil temperature and soil water content than with either soil temperature or soil water content alone. Temperature sensitivity (Q10) increased with stand age in both the litter and the no litter treatments. Considering the effects of aboveground litter, this study provides insights for predicting future soil carbon fluxes and for accurately assessing soil carbon budgets. 展开更多
关键词 Aboveground litter Nonlinear equation Populus davidiana Dode soil respiration temperature sensitivity
下载PDF
Spatio-temporal Variation of Soil Respiration and Its Driving Factors in Semi-arid Regions of North China 被引量:3
9
作者 ZENG Xinhua SONG Yigang +1 位作者 ZHANG Wanjun HE Shengbing 《Chinese Geographical Science》 SCIE CSCD 2018年第1期12-24,共13页
Soil respiration (SR) is the second-largest flux in ecosystem carbon cycling. Due to the large spatio-temporal variability of environmental factors, SR varied among different vegetation types, thereby impeding accur... Soil respiration (SR) is the second-largest flux in ecosystem carbon cycling. Due to the large spatio-temporal variability of environmental factors, SR varied among different vegetation types, thereby impeding accurate estimation of CO2 emissions via SR. However, studies on spatio-temporal variation of SR are still scarce for semi-arid regions of North China. In this study, we conducted 12-month SR measurements in six land-use types, including two secondary forests (Populus tomentosa (PT) and Robinia pseudoacacia (RP)), three artificial plantations (Armeniaca sibirica (AS), Punica granatum (PG) and Ziziphusjujuba (Z J)) and one natural grassland (GR), to quantify spatio-temporal variation of SR and distinguish its controlling factors. Results indicated that SR exhibited distinct sea- sonal patterns for the six sites. Soil respiration peaked in August 2012 and bottomed in April 2013. The temporal coefficient of variation (CI0 of SR for the six sites ranged from 76.98% to 94.08%, while the spatial CV of SR ranged from 20.28% to 72.97% across the 12-month measurement. Soil temperature and soil moisture were the major controlling factors of temporal variation of SR in the six sites, while spatial variation in SR was mainly caused by the differences in soil total nitrogen (STN), soil organic carbon (SOC), net photosynthesis rate, and fine root biomass. Our results show that the annual average SR and Q10 (temperature sensitivity of soil respira- tion) values tended to decrease from secondary forests and grassland to plantations, indicating that the conversion of natural ecosystems to man-made ecosystems may reduce CO2 emissions and SR temperature sensitivity. Due to the high spatio-temporal variation of SR in our study area, care should be taken when converting secondary forests and grassland to plantations from the point view of accurately quantifying C02 emissions via SR at regional scales. 展开更多
关键词 soil respiration spatio-temporal variation substrate availability temperature sensitivity global carbon cycle North China
下载PDF
Seasonal Changes in Soil Respiration with An Elevation Gradient in Abies nephrolepis(Trautv.)Maxim.Forests in North China
10
作者 Zhijie Tian Xueying Jia +4 位作者 Tingting Liu Eryan Ma Lamei Xue Yanqiu Hu Qingrong Zheng 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第7期1543-1556,共14页
Soil respiration(Rs)plays an important role in regulating carbon cycle of terrestrial ecosystems and presents temporal and spatial heterogeneity.Abies nephrolepis is a tree species that prefers the cold and wet enviro... Soil respiration(Rs)plays an important role in regulating carbon cycle of terrestrial ecosystems and presents temporal and spatial heterogeneity.Abies nephrolepis is a tree species that prefers the cold and wet environment and is mainly distributed in Northeast Asia and East Asia.The Rs variations of Abies nephrolepis forests communities are generally environmental-sensitive and can effectively reflect the adaptive responses of forest ecosystems to climate change.In this study,the growing-seasonal variations of Rs,soil temperature,soil water content and soil properties of Abies nephrolepis forests were analyzed along an altitude gradient(2000,2100,2200 and 2300 m)over two years on Wutai Mountain in North China.As the main results showed,soil respiration keeps the same change trend as soil temperature and reached peaks in July at 2000 m in 2019 and 2020.During 26th July to 25th October in 2019 and 27th May to 23rd October in 2020,on the whole,the soil temperature independently explained 76.2%of Rs variations while the soil water content independently explained 26.8%.Soil temperature and soil water content jointly explained 81.8%of Rs variations.Soil properties explained 61.8%and 69.6%of Rs variation in 2019 and 2020,respectively.Soil organic carbon content and soil enzyme activity had the signifi-cant(P<0.01)negative and positive relationships,respectively,with Rs variation.With altitudes evaluated from 2000 to 2300 m,soil respiration temperature sensitivity(Q10)and the soil organic carbon content increased by 12.4%and 10.4%,respectively,while invertase activity,cellulase activity and urease activity dropped by 41.2%,29.45%and 38.19%,respectively.The results demonstrate that(1)soil temperature is the major factor affecting Rs variations in Abies nephrolepis forests;(2)weakened microbial carbon metabolism in high-altitude areas results in the accumulation of soil organic carbon;(3)with a higher Q10,forest ecosystems in high-altitude areas might be more easily affected by climate change;(4)climate warming might accelerate the consumption of soil organic carbon sink in forest ecosystems,especially in high-altitude areas. 展开更多
关键词 soil respiration Abies nephrolepis ALTITUDE soil respiration temperature sensitivity soil organic carbon
下载PDF
Does a General Temperature-Dependent Q10 Model of Soil Respiration Exist at Biome and Global Scale? 被引量:37
11
作者 Hua CHEN Han-Qin TIAN 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第11期1288-1302,共15页
Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity) function in ecosystem models. Q10 is usually treated as a constant of 2 in these models, although Q10 value of SR often ... Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity) function in ecosystem models. Q10 is usually treated as a constant of 2 in these models, although Q10 value of SR often decreases with increasing temperatures. It remains unclear whether a general temperature- dependent Q10 model of SR exists at biome and global scale. In this paper, we have compiled the long-term Q10 data of 38 SR studies ranging from the Boreal, Temperate, to Tropical/Sublropical biome on four continents. Our analysis indicated that the general temperature-dependent biome Q10 models of SR existed, especially in the Boreal and Temperate biomes. A single-exponential model was better than a simple linear model in fitting the average Q10 values at the biome scale. Average soil temperature is a better predictor of Q10 value than average air temperature in these models, especially in the Boreal biome. Soil temperature alone could explain about 50% of the Q10 variations in both the Boreal and Temperate biome single-exponential Q10 model. Q10 value of SR decreased with increasing soil temperature but at quite different rates among the three biome Q10 models. The k values (Q10 decay rate constants) were 0.09, 0.07, and 0.02/℃ in the Boreal, Temperate, and Tropical/Subtropical biome, respectively, suggesting that Q10 value is the most sensitive to soil temperature change in the Boreal biome, the second in the Temperate biome, and the least sensitive in the Tropical/ Subtropical biome. This also indirectly confirms that acclimation of SR in many soil warming experiments probably occurs. The k value in the "global" single-exponential Q10 model which combined both the Boreal and Temperate biome data set was 0.08/℃. However, the global general temperature-dependent Q10 model developed using the data sets of the three biomes is not adequate for predicting Q10 values of SR globally. The existence of the general temperature-dependent Q10 models of SR in the Boreal and Temperate biome has important implications for modeling SR, especially in the Boreal biome. More detail model runs are needed to exactly evaluate the impact of using a fixed Q10 vs a temperature-dependent Q10 on SR estimate in ecosystem models (e.g., TEM, Biome-BGC, and PnET). 展开更多
关键词 air temperature biome q10 model global q10 model simple linear model single-exponentialmodel soil respiration (SR) soil temperature temperature sensitivity (q10).
原文传递
Spatial patterns in temperature sensitivity of soil respiration in China: Estimation with inverse modeling 被引量:4
12
作者 ZHOU Tao1,2, SHI PeiJun1,2, HUI DaFeng3 & LUO YiQi4 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China 2 Academy of Disaster Reduction and Emergency Management, Ministry of Civil Affairs & Ministry of Education, Beijing 100875, China +1 位作者 3 Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA 4 Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA 《Science China(Life Sciences)》 SCIE CAS 2009年第10期982-989,共8页
Temperature sensitivity of soil respiration (Q10) is an important parameter in modeling the effects of global warming on ecosystem carbon release. Experimental studies of soil respiration have ubiquitously indicated t... Temperature sensitivity of soil respiration (Q10) is an important parameter in modeling the effects of global warming on ecosystem carbon release. Experimental studies of soil respiration have ubiquitously indicated that Q10 has high spatial heterogeneity. However, most biogeochemical models still use a constant Q10 in projecting future climate change and no spatial pattern of Q10 values at large scales has been derived. In this study, we conducted an inverse modeling analysis to retrieve the spatial pattern of Q10 in China at 8 km spatial resolution by assimilating data of soil organic carbon into a proc-ess-based terrestrial carbon model (CASA model). The results indicate that the optimized Q10 values are spatially heterogeneous and consistent to the values derived from soil respiration observations. The mean Q10 values of different soil types range from 1.09 to 2.38, with the highest value in volcanic soil, and the lowest value in cold brown calcic soil. The spatial pattern of Q10 is related to environmental factors, especially precipitation and top soil organic carbon content. This study demonstrates that inverse modeling is a useful tool in deriving the spatial pattern of Q10 at large scales, with which being incorporated into biogeochemical models, uncertainty in the projection of future carbon dynamics could be potentially reduced. 展开更多
关键词 temperature sensitivity q10 soil respiration GLOBAL WARMING INVERSE analysis
原文传递
土壤异养呼吸温度敏感性(Q10)的影响因子 被引量:22
13
作者 盛浩 杨玉盛 +4 位作者 陈光水 高人 曾宏达 杜紫贤 张静 《亚热带资源与环境学报》 2006年第1X期74-83,共10页
首先对国内外土壤异养呼吸Q10的研究成果进行了全面的综合述评.影响土壤异养呼吸Q10的因子主要包括环境因子(主要是温度和湿度)、呼吸底物和土壤生物等.较多的研究表明土壤异养呼吸的Q10在低温时较高,高温时较低,但Q10也可随温度... 首先对国内外土壤异养呼吸Q10的研究成果进行了全面的综合述评.影响土壤异养呼吸Q10的因子主要包括环境因子(主要是温度和湿度)、呼吸底物和土壤生物等.较多的研究表明土壤异养呼吸的Q10在低温时较高,高温时较低,但Q10也可随温度升高而增加,或随温度变化而保持稳定;通常土壤异养呼吸的Q10与土壤水分成正相关,但极端水分条件下(干旱胁迫或渍水)Q10较低;有限的研究表明呼吸底物和土壤生物对土壤异养呼吸Q10的影响还具有很大的不确定性;调控土壤异养呼吸Q10的机理目前还不清楚.然后从温度、水分、呼吸底物、土壤微生物对土壤异养呼吸Q10的影响等方面对影响土壤异养呼吸温度敏感性的原因进行了深入的探讨,并提出未来应重点开展的研究:(1)加强不同尺度土壤异养呼吸Q10的影响因子及调控机理研究;(2)扩大土壤异养呼吸Q10的野外研究;(3)扩大热带、亚热带土壤异养呼吸Q10的研究;(4)深入探讨呼吸底物有效性和土壤生物对土壤异养呼吸Q10的影响;(5)加强其他因子对土壤异养呼吸Q10影响的研究. 展开更多
关键词 土壤异养呼吸 温度敏感性 q10 温度 水分 呼吸底物 土壤生物
下载PDF
Response of Ecosystem Respiration to Experimental Warming and Clipping at Daily Time Scale in an Alpine Meadow of Tibet 被引量:12
14
作者 FU Gang SHEN Zhen-xi +4 位作者 ZHANG Xian-zhou YU Cheng-qun ZHOU Yu-ting LI Yun-long YANG Peng-wan 《Journal of Mountain Science》 SCIE CSCD 2013年第3期455-463,共9页
The alpine meadow, as one of the typical vegetation types on the Tibetan Plateau, is one of the most sensitive terrestrial ecosystems to climate warming. However, how climate warming affects the carbon cycling of the ... The alpine meadow, as one of the typical vegetation types on the Tibetan Plateau, is one of the most sensitive terrestrial ecosystems to climate warming. However, how climate warming affects the carbon cycling of the alpine meadow on the Tibetan Plateau is not very dear. A field experiment under controlled experimental warming and clipping conditions was conducted in an alpine meadow on the Northern Tibetan Plateau since July 2008. Open top chambers (0TCs) were used to simulate climate warming. The main objective of this study was to examine the responses of ecosystem respiration (Reco) and its temperature sensitivity to experimental warming and clipping at daily time scale. Therefore, we measured Reco once or twice a month from July to September in 2010, from June to September in 2011 and from August to September in 2012. Air temperature dominated daily variation of Reco whether or not experimental warming and clipping were present. Air temperature was exponentially correlated with Reco and it could significantly explain 58-96% variation of Redo at daily time scale. Experimental warming and clipping decreased daily mean Reco by 5.8-37.7% and -11.9-23.0%, respectively, although not all these changes were significant. Experimental warming tended to decrease the temperature sensitivity of Reco, whereas clipping tended to increase the temperature sensitivity of Reco at daily time scale. Our findings suggest that Reco wasmainly controlled by air temperature and may acclimate to climate warming due to its lower temperature sensitivity under experimental warming at daily time scale. 展开更多
关键词 ACCLIMATION Air temperature Open topchamber temperature sensitivity respirationquotient q10)
下载PDF
Temperature dependence of nitrogen mineralization and microbial status in O_H horizon of a temperate forest ecosystem 被引量:2
15
作者 Ali Bagherzadeh Rainer Brumme Friedrich Beese 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第1期37-43,共7页
It was hypothesized that increasing air and/or soil temperature would increase rates of microbial processes including litter decomposition and net N mineralization, resulting in greater sequestration of carbon and nit... It was hypothesized that increasing air and/or soil temperature would increase rates of microbial processes including litter decomposition and net N mineralization, resulting in greater sequestration of carbon and nitrogen in humus, and consequently development in OH horizon (humus horizon). To quantify the effect of temperature on biochemical processes controlling the rate of OH layer development three adjacent forest floors under beech, Norway spruce and mixed species stands were investigated at Soiling forest, Germany by an incubation experiment of OH layer for three months. Comparing the fitted curves for temperature sensitivity of OH layers in relation to net N mineralization revealed positive correlation across all sites. For the whole data set of all stands, a Q10 (temperature sensitivity index) value of 2.35-2.44 dependent on the measured units was found to be adequate for describing the temperature dependency of net N mineralization at experimental site. Species-specific differences of substrate quality did not result in changes in biochemical properties of OH horizon of the forest floors. Temperature elevation increased net N mineralization without significant changes in microbial status in the range of I to 15℃. A low Cmic /Corg (microbial carbon/organic carbon) ratio at 20℃ indicated that the resource availability for decomposers has been restricted as reflected in significant decrease of microbial biomass. 展开更多
关键词 BEECH SPRUCE nitrogen mineralization forest floor temperature temperature sensitivity index (q10)
下载PDF
Temperature dependence of carbon mineralization and nitrous oxide emission in a temperate forest ecosystem
16
作者 Ali Bagherzadeh Rainer Brumme Friedrich Beese 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第2期107-112,共6页
The measurement of CO2 and N2O effiux from forest soils is of great importance in evaluating the role of forests as sequestering agents of atmospheric CO2 and nitrogen. To quantify the effect of site on temperature de... The measurement of CO2 and N2O effiux from forest soils is of great importance in evaluating the role of forests as sequestering agents of atmospheric CO2 and nitrogen. To quantify the effect of site on temperature dependence of net C-mineralization and N2O-N emissions, three adjacent forest floors under beech, Norway spruce and mixed species stands were investigated at Soiling forest, Germany, by an incubation experiment for three months. The investigated net C-mineralization and N2O-N emissions from all forest floors exhibited an exponential increase with respect to temperature elevation. The temperature coefficient function (Q10 value), was fitted to flux rates to describe the temperature sensitivity of forest floors on temperature in the range of 1-20℃. Comparing the fitted curves for temperature sensitivity of the forest floors in relation to net carbon mineralization and nitrous oxide emission rates revealed a strong positive correlation across all sites. For the whole data set of all stands, a Q10 value of 1.73-2.10 for net C-mineralization and 2.81-3.58 for N2O-N emissions per measured unit was found to describe the temperature dependency of net C-mineralization and N20-N efflux at experimental site. The absence of clear differences between beech and spruce in mono and mixed species cultures on temperature dependencies of net C-mineralization and N2O-N emission rates indicated that the flux rates were not affected by species-specific differences of litter quality. 展开更多
关键词 BEECH SPRUCE net C-mineralization nitrous oxide emission temperature temperature sensitivity index (q10)
下载PDF
长沙城市绿地森林与草地土壤呼吸及温度敏感性变化特征
17
作者 李淼 邓正苗 +5 位作者 谢永宏 李有志 王涛 汪丽燕 李峰 张贤铭 《湖南林业科技》 2024年第4期1-9,共9页
城市绿地在减缓城市碳排放和温室效应中发挥着巨大作用。土壤呼吸是城市绿地碳循环的重要环节,决定着生态系统碳汇功能的强弱。以湖南省长沙市远大城园区内森林和草地生态系统为研究对象,于2021年11月—2022年12月对土壤呼吸速率及土壤... 城市绿地在减缓城市碳排放和温室效应中发挥着巨大作用。土壤呼吸是城市绿地碳循环的重要环节,决定着生态系统碳汇功能的强弱。以湖南省长沙市远大城园区内森林和草地生态系统为研究对象,于2021年11月—2022年12月对土壤呼吸速率及土壤环境进行监测,并结合2022年发生的极端干旱事件,分析城市绿地森林与草地生态系统土壤呼吸特征及其对极端干旱的响应。结果表明:森林和草地生态系统土壤呼吸速率总体呈现出夏秋季(231.98、239.33 mg·m^(-2)·h^(-1))>冬春季(179.28、91.15 mg·m^(-2)·h^(-1))(以C计);极端干旱下土壤呼吸变化显著,在森林生态系统中更加明显;年尺度下,森林和草地生态系统土壤碳排放量分别为681.55、564.66 g·m^(-2)·a-1(以C计);森林和草地生态系统土壤呼吸温度敏感性系数(Q 10值)的范围分别为0.81~1.06、1.19~1.80,草地生态系统对温度变化的响应更敏感,在极端干旱气候条件下可能会导致更多的土壤碳流失。研究结果可以为城市绿地建设和城市“碳中和”目标的实现提供科学依据。 展开更多
关键词 城市绿地 土壤呼吸 温度敏感性 极端干旱 长沙市
下载PDF
Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China 被引量:17
18
作者 Xu-Li Tang Guo-Yi Zhou +4 位作者 Shu-Guang Liu De-Qiang Zhang Shi-Zhong Liu Jiong Li Cun-Yu Zhou 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2006年第6期654-663,共10页
The spatial and temporal variations in soil respiration and its relationship with biophysical factors In forests near the Tropic of Cancer remain highly uncertain. To contribute towards an Improvement of actual estima... The spatial and temporal variations in soil respiration and its relationship with biophysical factors In forests near the Tropic of Cancer remain highly uncertain. To contribute towards an Improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured In three successional subtropical forests at the Dlnghuahan Nature Reserve (DNR) In southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and Its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared In successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates In the cool dry season (October-March). Soil respiration measured at these forests showed a clear Increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate In the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm^2 per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm^2 per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm^2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation In DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture Increased with progressive succession processes. This increase is caused, in part, by abundant respirators In advanced-successional forest, where more soil moisture is needed to maintain their activities. 展开更多
关键词 Dinghushan Nature Reserve moisture sensitivity q10 soil CO2 efflux soil respiration subtropical forests successional forests temperature sensitivity Tropic of Cancer.
原文传递
增温与凋落物去除对人工草地土壤呼吸的影响 被引量:1
19
作者 张野 刘新梅 +4 位作者 樊月 张微微 武菊英 王东丽 邹俊亮 《草地学报》 CAS CSCD 北大核心 2024年第1期248-260,共13页
人工草地是重要的碳汇,但其土壤呼吸及其温度敏感性(Q10)对气候变化和干扰的响应尚不清楚。本研究在大陆性季风气候区的紫苜蓿(Medicago sativa)和无芒雀麦(Bromus inermis)2种人工草地开展了增温和凋落物处理试验,测量了土壤呼吸速率和... 人工草地是重要的碳汇,但其土壤呼吸及其温度敏感性(Q10)对气候变化和干扰的响应尚不清楚。本研究在大陆性季风气候区的紫苜蓿(Medicago sativa)和无芒雀麦(Bromus inermis)2种人工草地开展了增温和凋落物处理试验,测量了土壤呼吸速率和Q10,并分析了不同草地对这些影响的响应差异。结果表明:增温使年均土壤温度显著增加约2℃(P<0.05);同时,使年均土壤湿度和电导率显著降低(P<0.05)。增温使年平均土壤呼吸速率降低8.81%;凋落物去除使年平均土壤呼吸速率降低9.33%。增温和凋落物去除均使Q10降低。不同草地对增温和凋落物处理有不同的响应,其中紫苜蓿草地对增温的响应大于无芒雀麦草地,而无芒雀麦草地对凋落物处理的响应大于紫苜蓿草地。本研究表明,试验区无芒雀麦群落相较于紫苜蓿群落更能抵抗气候变化和干扰的影响,有利于减少碳排放,是更好的建植人工草地的物种。 展开更多
关键词 土壤呼吸 增温 凋落物 温度敏感性 人工草地生态系统
下载PDF
绿肥还田结合减氮对麦田土壤呼吸及其温度敏感性的影响 被引量:1
20
作者 杨学慧 于爱忠 +6 位作者 柴健 李悦 王凤 王鹏飞 吕汉强 王玉珑 尚永盼 《中国生态农业学报(中英文)》 CSCD 北大核心 2024年第1期61-70,共10页
研究绿肥还田结合氮肥减施对麦田土壤呼吸动态及小麦产量的影响,以期为干旱绿洲灌区农田碳减排技术研发提供理论依据。试验于2021—2022年在甘肃河西绿洲灌区开展,以常规施氮无绿肥还田(N100)为对照,设施用15000 kg∙hm^(−2)绿肥+85%氮肥... 研究绿肥还田结合氮肥减施对麦田土壤呼吸动态及小麦产量的影响,以期为干旱绿洲灌区农田碳减排技术研发提供理论依据。试验于2021—2022年在甘肃河西绿洲灌区开展,以常规施氮无绿肥还田(N100)为对照,设施用15000 kg∙hm^(−2)绿肥+85%氮肥(G_(1)N_(85))、22500 kg∙hm^(−2)绿肥+85%氮肥(G_(2)N_(85))、30000 kg∙hm^(−2)绿肥+85%氮肥(G_(3)N_(85))、15000 kg∙hm^(−2)绿肥+70%氮肥(G_(1)N_(70))、22500 kg∙hm^(−2)绿肥+70%氮肥(G_(2)N_(70))和30000 kg∙hm^(−2)绿肥+70%氮肥(G_(3)N_(70))共7个处理。探讨小麦生育期的土壤呼吸速率、碳排放量、产量及碳排放效率,分析土壤呼吸对土壤温度的响应。结果表明:不同处理下麦田土壤呼吸速率均呈先升高后降低的单峰趋势,全生育期内变化范围为0.8~6.2μmol∙m^(−2)∙s−1。绿肥还田结合氮肥减施显著提高麦田土壤呼吸速率及土壤碳排放总量,与N100相比,平均增幅分别为7.2%~19.8%和5.7%~18.8%;其中G_(3)N_(85)和G_(3)N_(70)较其他处理土壤呼吸速率分别增加2.3%~16.0%和3.3%~19.8%,土壤碳排放总量分别增加2.9%~15.2%和3.1%~18.8%;与G_(3)N_(85)相比,G_(3)N_(70)处理两年平均土壤呼吸速率及土壤碳排放总量分别增加3.3%和3.1%(P<0.05)。绿肥还田结合氮肥减施处理显著降低土壤呼吸温度敏感性(Q10),与N100相比,Q10值降幅为10.4%~18.1%(P<0.05)。绿肥还田结合氮肥减施显著影响了小麦产量和土壤碳排放效率,其中G_(3)N_(85)处理分别显著高于其他处理4.2%~45.6%和0.3%~26.4%(P<0.05)。可见,绿肥还田结合氮肥减施在增强麦田土壤呼吸的同时,显著降低土壤呼吸温度敏感性,提高小麦产量和碳排放效率,其中翻压绿肥30000 kg∙hm^(−2)配合氮肥减量15%处理(G_(3)N_(85))是河西绿洲灌区小麦田节氮减排和提高农田土壤生产力的有效途径。 展开更多
关键词 绿肥 小麦 减氮 土壤呼吸 土壤碳排放 土壤呼吸温度敏感性
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部