High pressure is an effective method to induce structural and electronic changes,creating novel high-pressure structures with excellent physical and chemical properties.Herein,we investigate the structural phase trans...High pressure is an effective method to induce structural and electronic changes,creating novel high-pressure structures with excellent physical and chemical properties.Herein,we investigate the structural phase transition of hafnium dihydrogen(HfH2)in a pressure range of 0 GPa-500 GPa through the first-principles calculations and the crystal structure analysis by particle swarm optimization(CALYPSO)code.The high-pressure phase transition sequence of HfH2is I4/mmm→Cmma→P-3m1 and the two phase transition pressure points are 220.21 GPa and 359.18 GPa,respectively.A newly trigonal P-3m1 structure with 10-fold coordination first appears as an energy superior structure under high pressure.These three structures are all metallic with the internal ionic bonding of Hf and H atoms.Moreover,the superconducting transition temperature(Tc)values of Cmma at 300 GPa and P-3m1 at 500 GPa are 3.439 K and 19.737 K,respectively.Interestingly,the superconducting transition temperature of the P-3m1 structure presents an upward trend with the pressure rising,which can be attributed to the increase of electron-phonon coupling caused by the enhanced Hf-d electronic density of states at Fermi level under high pressure.展开更多
The uniformity principle of temperature difference field is very useful in heat exchanger analyses and optimizations.In this paper, we analyze some other heat transfer optimization problems in the thermal management s...The uniformity principle of temperature difference field is very useful in heat exchanger analyses and optimizations.In this paper, we analyze some other heat transfer optimization problems in the thermal management system of spacecrafts,including the cooling of thermal components, the one-stream series-wound heat exchanger network, the volume-to-point heat conduction problem, and the radiative heat transfer optimization problem, and have found that the uniformity principle of temperature difference field also holds. When the design objectives under the given constraints are achieved, the distributions of the temperature difference fields are uniform. The principle reflects the characteristic of the distribution of potential in the heat transfer optimization problems. It is also shown that the principle is consistent with the entransy theory. Therefore, although the principle is intuitive and phenomenological, the entransy theory can be the physical basis of the principle.展开更多
Calorimetric measurements are performed to determine the specific heat of Si-xat.% Ge(where x = 0, 10, 30,50, 70, 90 and 100) alloys within a broad temperature range from 123 to 823 K. The measured specific heat incre...Calorimetric measurements are performed to determine the specific heat of Si-xat.% Ge(where x = 0, 10, 30,50, 70, 90 and 100) alloys within a broad temperature range from 123 to 823 K. The measured specific heat increases dramatically at low temperatures, and the composition dependence of specific heat is evaluated from the experimental results. Meanwhile, the specific heat at constant volume, the thermal expansion, and the bulk modulus of Si and Ge are investigated by the first principle calculations combined with the quasiharmonic approximation. The negative thermal expansion is observed for both Si and Ge. Furthermore, the isobaric specific heat of Si and Ge is calculated correspondingly from OK to their melting points, which is verified by the measured results and accounts for the temperature dependence in a still boarder range.展开更多
Spinodal phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends was investigated by the time-resolved small angle light scattering (SALS) technique. It was found that t...Spinodal phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends was investigated by the time-resolved small angle light scattering (SALS) technique. It was found that the influence of temperature on the scattering intensity evolution followed the time-temperature superposition principle. The relationship between temperature and the relaxation ti me of scattering intensity I(t) can be well described by the Williams-Landel-Ferry (WLF) function.展开更多
Based on the nonlinear displacement-strain relationship,the virtual work principle method was used to establish the nonlinear equilibrium equations of steel beams with semi-rigid connections under vertical uniform loa...Based on the nonlinear displacement-strain relationship,the virtual work principle method was used to establish the nonlinear equilibrium equations of steel beams with semi-rigid connections under vertical uniform loads and temperature change.Considering the non-uniform temperature distribution across the thickness of beams,the formulas for stresses and vertical displacements were presented.On the basis of a flowchart for analysis of the numerical example,the effect of temperature change on the elastic behavior of steel beams was investigated.It is found that the maximal stress is mainly influenced by axial temperature change,and the maximal vertical displacement is principally affected by temperature gradients.And the effect of temperature gradients on the maximal vertical displacement decreases with the increase of rotational stiffness of joints.Both the maximal stress and vertical displacement decrease with the increase of rotational stiffness of joints.It can be concluded that the effects of temperature changes and rotational stiffness of joints on the elastic behavior of steel beams are significant.However,the influence of rotational stiffness becomes smaller when the rotational stiffness is larger.展开更多
Compositions, proportions, and equilibrium temperature of coexisting two-feldspar in crystalline rocks are of great importance to classification in petrography and interpretation of petrogenesis. Crystalline rocks are...Compositions, proportions, and equilibrium temperature of coexisting two-feldspar in crystalline rocks are of great importance to classification in petrography and interpretation of petrogenesis. Crystalline rocks are usually composed of 4-6 minerals (phases), depending on their independent chemical components and the equilibrium temperature of crystallizations. In general, number of mineral phases can be determined by the "Phase Rule". According to the mass balance principle, bulk composition of coexisting two-feldspar could be evaluated from the bulk chemistry of a rock, provided that the compositions of the coexisting mafic mineral phases containing calcium, sodium, and potassium oxides are determined, e.g., by microprobe analysis. The compositions, proportions, and temperature of two-feldspar in equilibrium can thus be simultaneously resolved numerically from bulk composition of the rock, by incorporating the activity/composition relations of the ternary feldspars with the mass balance constraints. Upon the numerical approximation method presented in this paper, better-quality, internally consistent data on feldspar group could usually be obtained, which would be expected more realistic and accurate in consideration of thermodynamic equilibria in the system of crystalline rocks, as well as bulk chemistry of a rock and the composing minerals.展开更多
Stress-dependence of the intrinsic time of viscoelastic materialsis investigated. The influence of stress level on the intrinsic timeis considered to be similar to that of temperature, pressure, solventcon- centration...Stress-dependence of the intrinsic time of viscoelastic materialsis investigated. The influence of stress level on the intrinsic timeis considered to be similar to that of temperature, pressure, solventcon- centration, damage and physical aging. Thetime-temperature-stress equivalence principle is proposed, byemploying which, the creep curves at different temperatures andstress level can be shifted into a master curve at referencetemperature and stress level.展开更多
Brittleness is a dominant issue that restricts potential applications of Mg_2Si intermetallic compounds(IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility ...Brittleness is a dominant issue that restricts potential applications of Mg_2Si intermetallic compounds(IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg_2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg_2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10 wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg_2Si–Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100℃. When the content of Al reached 6 wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased.展开更多
Einstein’s equivalence principle allows one to compare the magnitudes of a gravitational acceleration field with the magnitudes of a field of Unruh acceleration temperatures. The validity of such a comparison is demo...Einstein’s equivalence principle allows one to compare the magnitudes of a gravitational acceleration field with the magnitudes of a field of Unruh acceleration temperatures. The validity of such a comparison is demonstrated by using it to derive the effective Hawking black body radiation at a Schwarzschild black hole horizon. One can then extend the black hole thought experiment to a Hawking-Unruh temperature equation expressed in terms of the Schwarzschild radius. This follows an inverse radius law rather than an inverse radius-squared law. Following a brief discussion of current theoretical failures to explain galactic rotation curves, the Unruh acceleration temperature equations are brought together to show how a rotating supermassive black hole galactic system should follow an inverse radius rule of centripetal gravitational force and centripetal acceleration. This result appears to indicate that galactic observations currently attributed to dark matter may in part be attributed to classical Newtonian dynamics superimposed on a relativistic rotating system powered by a supermassive black hole.展开更多
Very recently, a new Ni-based antiperovskite nitride superconductor CuNNi3 has been successfully synthesized. We investigate the electronic structures, phonon dispersions, and electron–phonon interactions of CuNNi3 a...Very recently, a new Ni-based antiperovskite nitride superconductor CuNNi3 has been successfully synthesized. We investigate the electronic structures, phonon dispersions, and electron–phonon interactions of CuNNi3 and the isostructual ZnNNi3 by first-principles approach. By analyzing the Eliashberg function we obtain the superconducting transition temperature Tc 3.16 K(3.53 K), which is in good agreement with corresponding experimental Tc 3.2 K(3 K) for Cu NNi3(ZnNNi3). They can be verified as conventional phonon-mediated superconductors.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11804031 and 11904297)the Scientific Research Project of Education Department of Hubei Province,China(Grant No.Q20191301)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.SWUKT22049)the Chongqing Talent Plan for Young Top Notch Talents,China(Grant No.202005007)。
文摘High pressure is an effective method to induce structural and electronic changes,creating novel high-pressure structures with excellent physical and chemical properties.Herein,we investigate the structural phase transition of hafnium dihydrogen(HfH2)in a pressure range of 0 GPa-500 GPa through the first-principles calculations and the crystal structure analysis by particle swarm optimization(CALYPSO)code.The high-pressure phase transition sequence of HfH2is I4/mmm→Cmma→P-3m1 and the two phase transition pressure points are 220.21 GPa and 359.18 GPa,respectively.A newly trigonal P-3m1 structure with 10-fold coordination first appears as an energy superior structure under high pressure.These three structures are all metallic with the internal ionic bonding of Hf and H atoms.Moreover,the superconducting transition temperature(Tc)values of Cmma at 300 GPa and P-3m1 at 500 GPa are 3.439 K and 19.737 K,respectively.Interestingly,the superconducting transition temperature of the P-3m1 structure presents an upward trend with the pressure rising,which can be attributed to the increase of electron-phonon coupling caused by the enhanced Hf-d electronic density of states at Fermi level under high pressure.
基金Project supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51621062)
文摘The uniformity principle of temperature difference field is very useful in heat exchanger analyses and optimizations.In this paper, we analyze some other heat transfer optimization problems in the thermal management system of spacecrafts,including the cooling of thermal components, the one-stream series-wound heat exchanger network, the volume-to-point heat conduction problem, and the radiative heat transfer optimization problem, and have found that the uniformity principle of temperature difference field also holds. When the design objectives under the given constraints are achieved, the distributions of the temperature difference fields are uniform. The principle reflects the characteristic of the distribution of potential in the heat transfer optimization problems. It is also shown that the principle is consistent with the entransy theory. Therefore, although the principle is intuitive and phenomenological, the entransy theory can be the physical basis of the principle.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51522102,51734008,51327901 and 51474175
文摘Calorimetric measurements are performed to determine the specific heat of Si-xat.% Ge(where x = 0, 10, 30,50, 70, 90 and 100) alloys within a broad temperature range from 123 to 823 K. The measured specific heat increases dramatically at low temperatures, and the composition dependence of specific heat is evaluated from the experimental results. Meanwhile, the specific heat at constant volume, the thermal expansion, and the bulk modulus of Si and Ge are investigated by the first principle calculations combined with the quasiharmonic approximation. The negative thermal expansion is observed for both Si and Ge. Furthermore, the isobaric specific heat of Si and Ge is calculated correspondingly from OK to their melting points, which is verified by the measured results and accounts for the temperature dependence in a still boarder range.
基金This work was supported by the Special Funds for Major State Basic Research Projects (Grand G1999064800)
文摘Spinodal phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends was investigated by the time-resolved small angle light scattering (SALS) technique. It was found that the influence of temperature on the scattering intensity evolution followed the time-temperature superposition principle. The relationship between temperature and the relaxation ti me of scattering intensity I(t) can be well described by the Williams-Landel-Ferry (WLF) function.
基金Project(50478075) supported by the National Natural Science Foundation of ChinaProject(YBJJ0817) supported by Scientific Research Foundation of Graduate School of Southeast University
文摘Based on the nonlinear displacement-strain relationship,the virtual work principle method was used to establish the nonlinear equilibrium equations of steel beams with semi-rigid connections under vertical uniform loads and temperature change.Considering the non-uniform temperature distribution across the thickness of beams,the formulas for stresses and vertical displacements were presented.On the basis of a flowchart for analysis of the numerical example,the effect of temperature change on the elastic behavior of steel beams was investigated.It is found that the maximal stress is mainly influenced by axial temperature change,and the maximal vertical displacement is principally affected by temperature gradients.And the effect of temperature gradients on the maximal vertical displacement decreases with the increase of rotational stiffness of joints.Both the maximal stress and vertical displacement decrease with the increase of rotational stiffness of joints.It can be concluded that the effects of temperature changes and rotational stiffness of joints on the elastic behavior of steel beams are significant.However,the influence of rotational stiffness becomes smaller when the rotational stiffness is larger.
基金granted by the National Eleventh Five-year Supporting Plan for Science and Technology (2006BAD10B04)China Geological Survey Project (12120113087700)
文摘Compositions, proportions, and equilibrium temperature of coexisting two-feldspar in crystalline rocks are of great importance to classification in petrography and interpretation of petrogenesis. Crystalline rocks are usually composed of 4-6 minerals (phases), depending on their independent chemical components and the equilibrium temperature of crystallizations. In general, number of mineral phases can be determined by the "Phase Rule". According to the mass balance principle, bulk composition of coexisting two-feldspar could be evaluated from the bulk chemistry of a rock, provided that the compositions of the coexisting mafic mineral phases containing calcium, sodium, and potassium oxides are determined, e.g., by microprobe analysis. The compositions, proportions, and temperature of two-feldspar in equilibrium can thus be simultaneously resolved numerically from bulk composition of the rock, by incorporating the activity/composition relations of the ternary feldspars with the mass balance constraints. Upon the numerical approximation method presented in this paper, better-quality, internally consistent data on feldspar group could usually be obtained, which would be expected more realistic and accurate in consideration of thermodynamic equilibria in the system of crystalline rocks, as well as bulk chemistry of a rock and the composing minerals.
基金the Nalional Natural Science Foundation of China (No.19632030,50003005)the Education Committee of Hunan Province (No.99C122)
文摘Stress-dependence of the intrinsic time of viscoelastic materialsis investigated. The influence of stress level on the intrinsic timeis considered to be similar to that of temperature, pressure, solventcon- centration, damage and physical aging. Thetime-temperature-stress equivalence principle is proposed, byemploying which, the creep curves at different temperatures andstress level can be shifted into a master curve at referencetemperature and stress level.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0700500)the National Natural Science Foundation of China (No. 51574027)
文摘Brittleness is a dominant issue that restricts potential applications of Mg_2Si intermetallic compounds(IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg_2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg_2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10 wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg_2Si–Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100℃. When the content of Al reached 6 wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased.
文摘Einstein’s equivalence principle allows one to compare the magnitudes of a gravitational acceleration field with the magnitudes of a field of Unruh acceleration temperatures. The validity of such a comparison is demonstrated by using it to derive the effective Hawking black body radiation at a Schwarzschild black hole horizon. One can then extend the black hole thought experiment to a Hawking-Unruh temperature equation expressed in terms of the Schwarzschild radius. This follows an inverse radius law rather than an inverse radius-squared law. Following a brief discussion of current theoretical failures to explain galactic rotation curves, the Unruh acceleration temperature equations are brought together to show how a rotating supermassive black hole galactic system should follow an inverse radius rule of centripetal gravitational force and centripetal acceleration. This result appears to indicate that galactic observations currently attributed to dark matter may in part be attributed to classical Newtonian dynamics superimposed on a relativistic rotating system powered by a supermassive black hole.
基金supported by the Scientific Research Fund of Guilin University of Aerospace Technology,China(Grant No.YJ1410)
文摘Very recently, a new Ni-based antiperovskite nitride superconductor CuNNi3 has been successfully synthesized. We investigate the electronic structures, phonon dispersions, and electron–phonon interactions of CuNNi3 and the isostructual ZnNNi3 by first-principles approach. By analyzing the Eliashberg function we obtain the superconducting transition temperature Tc 3.16 K(3.53 K), which is in good agreement with corresponding experimental Tc 3.2 K(3 K) for Cu NNi3(ZnNNi3). They can be verified as conventional phonon-mediated superconductors.