期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fiber optic sensing technologies potentially applicable for hypersonic wind tunnel harsh environments
1
作者 Huacheng Qiu Fu Min Yanguang Yang 《Advances in Aerodynamics》 2020年第1期199-220,共22页
Advanced sensing techniques are in big demand for applications in hypersonic wind tunnel harsh environments,such as aero(thermo)dynamics measurements,thermal protection of aircraft structures,air-breathing propulsion,... Advanced sensing techniques are in big demand for applications in hypersonic wind tunnel harsh environments,such as aero(thermo)dynamics measurements,thermal protection of aircraft structures,air-breathing propulsion,light-weighted and highstrength materials,etc.In comparison with traditional electromechanical or electronic sensors,the fiber optic sensors have relatively high potential to work in hypersonic wind tunnel,due to the capability of responding to a wide variety of parameters,high resolution,miniature size,high resistant to electromagnetic and radio frequency interferences,and multiplexing,and so on.This article has classified and summarized the research status and the representative achievement on the fiber optic sensing technologies,giving special attention to the summary of research status on the popular Fabry-Perot interferometric,fiber Bragg gratings and(quasi)distributed fiber optic sensors working in hypersonic wind tunnel environment,and discussed the current problems in special optical fiber sensing technologies.This article would be regarded as reference for the researchers in hypersonic wind tunnel experiment field. 展开更多
关键词 Fiber optic sensor Hypersonic wind tunnel Harsh environment Fiber optic force balance High temperature strain sensing High temperature sensing Distributed sensing
原文传递
Ultrahigh-speed distributed Brillouin reflectometry 被引量:1
2
作者 Yosuke Mizuno Neisei Hayashi +2 位作者 Hideyuki Fukuda Kwang Yong Song Kentaro Nakamura 《Light(Science & Applications)》 SCIE EI CAS CSCD 2016年第1期349-356,共8页
Optical fibre sensors based on Brillouin scattering have been vigorously studied in the context of structural health monitoring on account of their capacity for distributed strain and temperature measurements.However,... Optical fibre sensors based on Brillouin scattering have been vigorously studied in the context of structural health monitoring on account of their capacity for distributed strain and temperature measurements.However,real-time distributed strain measurement has been achieved only for two-end-access systems;such systems reduce the degree of freedom in embedding the sensors into structures,and furthermore render the measurement no longer feasible when extremely high loss or breakage occurs at a point along the sensing fibre.Here,we demonstrate real-time distributed measurement with an intrinsically one-end-access reflectometry configuration by using a correlation-domain technique.In this method,the Brillouin gain spectrum is obtained at high speed using a voltage-controlled oscillator,and the Brillouin frequency shift is converted into a phase delay of a synchronous sinusoidal waveform;the phase delay is subsequently converted into a voltage,which can be directly measured.When a single-point measurement is performed at an arbitrary position,a strain sampling rate of up to 100 kHz is experimentally verified by detecting locally applied dynamic strain at 1 kHz.When distributed measurements are performed at 100 points with 10 times averaging,a repetition rate of 100 Hz is verified by tracking a mechanical wave propagating along the fibre.Some drawbacks of this ultrahigh-speed configuration,including the reduced measurement accuracy,lowered spatial resolution and limited strain dynamic range,are also discussed. 展开更多
关键词 Brillouin scattering distributed strain and temperature sensing high-speed measurement nonlinear optics optical fibre sensors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部