The vertical distribution of vegetation types along an elevational gradient in mountain areas largely depends on the elevational changes in air temperature and humidity. In this study, we presented the seasonal and di...The vertical distribution of vegetation types along an elevational gradient in mountain areas largely depends on the elevational changes in air temperature and humidity. In this study, we presented the seasonal and diurnal variations in the elevational gradients of air temperature and humidity on the southern and northern slopes in the middle Tianshan Mountain Range using data collected throughout the year via HOBO data loggers. The measurements were conducted at 12 different elevations from 1548 to 3277 m from September 2004 to August 2005. The results showed that the annual mean air temperature decreased along the elevational gradients with temperature lapse rates of(0.71±0.20)°C/100 m and(0.59±0.05)°C/100 m on the northern and southern slopes, respectively. The annual mean absolute humidity significantly decreased with increasing elevation on the northern slope but showed no significant trend on the southern slope. The annual mean relative humidity did not show a significant trend on the northern slope but increased with increasing elevation on the southern slope. The mean air temperature lapse rate exhibited significant seasonal variation, which is steeper insummer and shallower in winter, and this value varied between 0.37°C/100 m and 0.75°C/100 m on the southern slope and between 0.30°C/100 m and 1.02°C/100 m on the northern slope. The mean absolute and relative humidity also exhibited significant seasonal variations on both slopes, with the maximum occurring in summer and the minimum occurring in winter or spring. The monthly diurnal range of air temperature on both slopes was higher in spring than in winter. The annual range of air temperature on the southern slope was higher than that on the northern slope. Our results suggest that significant spatiotemporal variations in humidity and temperature lapse rate are useful when analyzing the relationships between species range sizes and climate in mountain areas.展开更多
The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humid...The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.展开更多
Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their re...Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.展开更多
The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringie...The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringiensis (Bt) cotton. The unstable resistance of Bt cotton to bollworms has been correlated with the reduced expression of CrylAc δ-endotoxin. The objective of this study was to investigate the effects of combined temperature and relative humidity stresses on the leaf CrylAc insecticidal protein expression during critical developmental stages. The study was undertaken on two transgenic cotton cultivars that share same parental background, Sikang 1 (a conventional cultivar) and Sikang 3 (a hybrid cultivar), during the 2007 and 2008 growing seasons at the Yangzhou University Farm, Yangzhou, China. The study was arranged with two factors that consisted of temperature (two levels) and relative humidity (three levels). The six T/RH treatments were 37℃/95%, 37℃/70%, 37℃/50%, 18℃/95%, 18℃/70%, and 18℃/50%. In 2007, the six treatments were imposed to the plants at peak flowering stage for 24 h; in 2008, the six treatments were applied to the plants at peak square, peak flowering, and peak boll stages for 48 h. The results of the study indicated that the leaf insecticidal protein expression in CrylAc was significantly affected by extreme temperature only at peak flowering stage, and by both extreme temperature and relative humidity during boll filling stage. The greatest reductions were observed when the stresses were applied at peak boll stage. In 2008, after 48 h stress treatment, the leaf Bt endotoxin expression reduced by 25.9-36.7 and 23.6-40.5% at peak boll stage, but only by 14.9-26.5 and 12.8-24.0% at peak flowering stage for Sikang 1 and Sikang 3, respectively. The greatest reduction was found under the low temperature combined with low relative humidity condition for both years. It is believed that the temperature and relative humidity stresses may be attributed to the reduced efficacy of Bt cotton in growing conditions in China, where extreme temperatures often increase up to 35-40℃ and/or decrease down to 15-20℃, and relative humidity may reach to 85-95% and/or reduce to 40-55% during the cotton growing season.展开更多
For improving the performance of stationary PEFC (polymer electrolyte fuel cell) system, the cell operating temperature up to 90℃ will be preferred in Japan during the period from 2020 to 2030. To understand the op...For improving the performance of stationary PEFC (polymer electrolyte fuel cell) system, the cell operating temperature up to 90℃ will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat and mass transfer analysis is required. The purpose of this study is to analyze the impact of relative humidity of supply gas on temperature distribution on the backside of separator in single ceil of PEFC using Nation membrane at higher temperature e.g. 90℃. The in-plane temperature distribution when power was being generated was measured using thermograph with various relative humidity of supply gases. It was found that the in-plane temperature distribution at the anode was more even than that at the cathode irrespective of the relative humidity of supply gas at the anode and the cathode. The temperature elevated along gas flow through the gas channel at the cathode irrespective of relative humidity of supply gas at the anode and the cathode. The in-plane temperature distribution at the cathode was narrower with the increase in Tini irrespective of relative humidity of supply gas at the cathode, while it was not observed when changing the relative humidity of supply gas at the anode. When the relative humidity of supply gas at cathode decreased, the in-plane temperature distribution at the anode was wider compared to decreasing the relative humidity of supply gas at the anode. The study concluded that the impact of relative humidity of supply gas at both anode and cathode had little impact on the in-plane temperature distribution at the cathode.展开更多
In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the t...In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the temperature and humidity of plastic greenhouse were studied. The results showed that the ventilation mode of opening side window and roof window could effectively reduce the temperature and humidity at the plant canopy height, which was conducive to the growth of plant in greenhouse.展开更多
The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands(UHIs).Air temperature and relative humidity are tw...The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands(UHIs).Air temperature and relative humidity are two main factors of thermal environmental comfort and have a critical impact on the urban environmental quality of human settlements.We measured the 2-m height air temperature and relative humidity at the Beijing Olympic Park and a nearby building roof for more than 1 year to elucidate seasonal variations in air temperature and relative humidity,as well as to investigate the outdoor thermal comfort.The results showed that the lawn of the park could,on average,reduce the air temperature by(0.80±0.19)℃,and increase the relative humidity by(5.24±2.91)% relative to the values measured at the building roof during daytime.During the nighttime,the lawn of the park reduced the air temperature by(2.64±0.64)℃ and increased the relative humidity by(10.77±5.20)%.The park was cooler and more humid than surrounding building area,especially in night period(more pronounced cooling with 1.84℃).Additionally,the lawn of the park could improve outdoor thermal comfort through its cooling and humidifying effects.The level of thermal comfort in the park was higher than that around the building roof for a total of 11 days annually in which it was above one or more thermal comfort levels(average reduced human comfort index of 0.92)except during the winter.展开更多
A novel embedded sensor network records changes in key climatic-environmental variables over a range of altitude in the BaekduDaegan Mountain (BDM) of Gangwon Province in Korea, a protected mountain region with uniq...A novel embedded sensor network records changes in key climatic-environmental variables over a range of altitude in the BaekduDaegan Mountain (BDM) of Gangwon Province in Korea, a protected mountain region with unique biodiversity undergoing climate change research. The investigated area is subdivided into three horizontal north-south study areas. Three variables, temperature (T, °C), relative humidity (RH, %), and light intensity (LI, lumens m-2, or lux, lx), have been continuously measured at hourly intervals from June, 2olo to September, 2011 using HOBO H8 devices at lO fixed study sites. These hourly observations are aggregated to monthly, seasonal and annual mean values, and results are summarized to inaugurate a long-term climate change investigation. A region wide T difference in accordance with altitude, or lapse rate, over the interval is calculated as o.4°C l00 m-1. T lapse rates change seasonally, with winter lapse rates being greater than those of summer. RH is elevated in summer compared to other seasons. LI within forestland is lower during summer and higher during other seasons. The obtained results could closely relate to the vegetation type and structure and the terrain state since data loggers were located in forestland.展开更多
A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and part...A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and partly cloudy conditions from FY-4 A GIIRS(geostationary interferometric infrared sounder) observations. Radiosonde observations from upper-air stations in China and level-2 operational products from the Chinese National Satellite Meteorological Center(NSMC)during the periods from December 2019 to January 2020(winter) and from July 2020 to August 2020(summer) are used to validate the accuracies of the retrieved temperature and humidity profiles. Comparing the 1 D-Var-retrieved profiles to radiosonde data, the accuracy of the temperature retrievals at each vertical level of the troposphere is characterized by a root mean square error(RMSE) within 2 K, except for at the bottom level of the atmosphere under clear conditions. The RMSE increases slightly for the higher atmospheric layers, owing to the lack of temperature sounding channels there.Under partly cloudy conditions, the temperature at each vertical level can be obtained, while the level-2 operational products obtain values only at altitudes above the cloud top. In addition, the accuracy of the retrieved temperature profiles is greatly improved compared with the accuracies of the operational products. For the humidity retrievals, the mean RMSEs in the troposphere in winter and summer are both within 2 g kg^(–1). Moreover, the retrievals performed better compared with the ERA5 reanalysis data between 800 h Pa and 300 h Pa both in summer and winter in terms of RMSE.展开更多
Rates of fixation in chromated copper arsenate (CCA-C) treated red pine (Pinus resinosa Ait.) and southern pine (Pinus spp) sapwood specimens using retention of 1.5, 2.0, 6.4 kg·m?3 are compared at temperature (T...Rates of fixation in chromated copper arsenate (CCA-C) treated red pine (Pinus resinosa Ait.) and southern pine (Pinus spp) sapwood specimens using retention of 1.5, 2.0, 6.4 kg·m?3 are compared at temperature (T) ranging from 70°C to 50°C and 5 different relative humidity (RH) conditions. The samples were investigated using the expressate method to follow chromium fixation. Red pine fixes faster than southern pine under all 11 post treatment schedules. The fixation rates for both species are not significantly different while the blocks were fixed under 6 fixation/drying schedules that differed only in the order of T/RH conditions applied. The rate of fixation of all samples in any fixation stage were reduced when the blocks were fixed under lower humidity conditions in spite of no change in chamber temperature. Some of this influence can be attributed to the effect of humidity on heat transfer into the wood and cooling of the wood surface.展开更多
It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) te...It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) temperature and relative humidity profiles from three reanalysis products (JRA-55, MERRA2, and FGOALS-f2) with shipboard global positioning system (GPS) sounding measurements obtained during the Eastern Indian Ocean Open Cruise in spring 2018. The FGOALS-f2 reanalysis product is based on the initialization module of a sub-seasonal to seasonal prediction system with a nudging-based data assimilation method. The results indicated that:(1) both JRA-55 and MERRA2 were reliable in characterizing the temperature profile from 850 to 600 hPa, with a maximum deviation of about <0.5℃. Both datasets showed a large negative deviation below 825 hPa, with a maximum bias of about 2℃ at 1000 hPa and 1.5℃ at 900 hPa, respectively.(2) JRA-55 showed good performance in characterizing the relative humidity profile above 850 hPa, with a maximum deviation of < 8%, while it showed much wetter conditions below 850 hPa. MERRA2 overestimated the relative humidity in the middle to lower troposphere, with a maximum deviation of about 15% at 925 hPa.(3) The FGOALS-f2 reanalysis product more accurately reproduced the temperature profile in the marine atmospheric boundary layer over the EEIO than that in JRA-55 and MERRA2, but showed much wetter conditions than the GPS sounding observations, with a maximum deviation of up to 20% at 600 hPa. Future applications of GPS sounding datasets are discussed.展开更多
A study on the autogenous shrinkage (AS) of concrete from a mesocosmic perspective was carried out using numerical simulation technology. The temperature history and the autogenous relative humidity (ARH), two fac...A study on the autogenous shrinkage (AS) of concrete from a mesocosmic perspective was carried out using numerical simulation technology. The temperature history and the autogenous relative humidity (ARH), two factors that have been shown to have occasional influence on this process in previous studies, were introduced into this study. According to these concepts, a program for simulation of the temperature field, humidity field, and stress field based on the equivalent age method and a fully automatic aggregate modeling tool were used. With the help of these programs, the study of a small concrete specimen provided some useful conclusions: the aggregate and the matrix show distinct distribution properties in the temperature field, humidity field, and stress field; the aggregate-matrix interface has a high possibility of becoming the location of the initial cracking caused by AS of concrete; the distribution of random aggregates is extremely important for mesoscopical analysis; and the temperature history is the main factor affecting the AS of concrete. On the whole, inherent mechanisms and cracking mechanisms of AS of concrete can be explained more reasonably and realistically only by considering the different characteristics of material phases and the effects of temperature and humidity.展开更多
Using hourly rainfall intensity, daily surface air temperature, humidity and low-level dew point depressions at55 stations in the southeast coast of China, and sea surface temperature from reanalysis in the coastal re...Using hourly rainfall intensity, daily surface air temperature, humidity and low-level dew point depressions at55 stations in the southeast coast of China, and sea surface temperature from reanalysis in the coastal region, this paper analyzes the connection between peak intensity of extreme afternoon short-duration rainfall(EASR) and humidity as well as surface air temperature. The dependency of extreme peak intensity of EASR on temperature has a significant transition. When daily highest surface temperature is below(above) 29°C, the peak rainfall intensity shows an ascending(descending) tendency with rising temperature. Having investigated the role of moisture condition in the variation of EASR and temperature, this paper discovered that the decrease of peak rainfall intensity with temperature rising is connected with the variation of relative humidity. At higher temperatures, the land surface relative humidity decreases dramatically as temperature further increases. During this process, the sea surface temperature maintains basically unchanged, resulting in indistinct variations of water vapor content at seas. As water vapor over land is mainly contributed by the quantitative moisture transport from adjacent seas, the decline of relative humidity over land will be consequently caused by the further rise of surface air temperature.展开更多
One-dimensional retrieval was performed on Typhoon Haiyan utilizing the advanced technology microwave sounder onboard the satellite Suomi NPP to retrieve the temperature and water vapor profiles of the typhoon.Compari...One-dimensional retrieval was performed on Typhoon Haiyan utilizing the advanced technology microwave sounder onboard the satellite Suomi NPP to retrieve the temperature and water vapor profiles of the typhoon.Comparisons of the retrieved profiles and ECMWF reanalysis were made to assess the results. The main conclusions are as follows.(1) The results have high spatial resolution and therefore can precisely represent the temperature and humidity distribution of the typhoon.(2) The retrieved temperature is low in the areas of low temperature and high in the areas of high temperature; similar patterns are observed for humidity. This means that systematic revision may be needed during routine application.(3) The results of the retrieved temperature and humidity profiles are generally accurate, which is quite important for typhoon monitoring.展开更多
Evapotranspiration in forests has been researched for a long time because it serves an important role in water resource issues and biomass production. By applying the reciprocal analysis based on the Bowen ratio conce...Evapotranspiration in forests has been researched for a long time because it serves an important role in water resource issues and biomass production. By applying the reciprocal analysis based on the Bowen ratio concept to the canopy surface, the sum result of sensible and latent heat fluxes, i.e., actual evapotranspiration (ET), is estimated from engineering aspect using the net radiation (Rn) and heat flux into the ground (G). The new method uses air temperature and humidity at a single height by determining the relative humidity (rehs) using the canopy temperature (Ts). The validity of the method is confirmed by the latent heat flux (lE) and sensible heat flux (H) observed by mean of eddy covariance method. The heat imbalance is corrected by multiple regression analysis. The temporal change of lE and H at the canopy surface is clarified using hourly and yearly data. Furthermore, the observed and estimated monthly evapotranspiration of the sites are compared. The research is conducted using hourly data and the validation of the method is conducted using observed covariance at five sites in the world using FLUXNET.展开更多
Weather and climate conditions drive the evolution of tropical glaciers which play an important role as water reservoirs for Peruvian inhabitants in the arid coast and semi-arid Andean region.The scarcity of long-term...Weather and climate conditions drive the evolution of tropical glaciers which play an important role as water reservoirs for Peruvian inhabitants in the arid coast and semi-arid Andean region.The scarcity of long-term high-quality observations over Peruvian glaciers has motivated the extensive use of reanalysis data to describe the climatic evolution of these glaciers.However,the representativeness and uncertainties of these reanalysis products over these glaciers are still poorly constrained.This study evaluates the ability of the ERA-Land reanalysis(ERAL)to reproduce hourly and monthly 2 m air temperature and relative humidity(T2m and Rh2m,respectively)over several Peruvian glaciers.We compared the ERAL with data from four on-glacier automatic weather stations(AWS),whose hourly time series were completed with nearby stations,for the period January 2017 to December 2019.Results indicates a better performance of the reanalysis for T2m(r>0.80)than for Rh2m(~0.4<r<~0.6)in all four glaciers.Concerning the observations,both parameters show a daily cycle influenced by the presence of the glacier.This influence is more prominent during the dry months when the so-called glacier damping and cooling effects are stronger.On a monthly time scale,the ERAL validation for both parameters are better in wet outer tropical sites(RMSE between±0.2℃ for T2m and between 3%-7% for Rh2m)rather than in dry outer tropical sites(RMSE between±0.2℃ for T2m and between 3%-7% for Rh2m).Among all sites considered in the study,the Rh2m bias is the highest in the Cavalca glacier(correlation of 0.81;RMSE 13%,MAE 11% and bias 8.3%)and the lowest in Artesonraju glacier(correlation of 0.96;RMSE 3%;MAE 2.3% and bias-0.8%).Based on certain considerations outlined in this paper,it is appropriate to use ERAL to characterize T2m and Rh2m conditions on Peruvian glaciers,particularly in the wet outer tropics.展开更多
A distribution map of osier weevil (Crytorrynchus lapathi L.) was drown up based on widely collecting information and field survey. The results showed that Osier weevil has a widespread in China, stretching from 33...A distribution map of osier weevil (Crytorrynchus lapathi L.) was drown up based on widely collecting information and field survey. The results showed that Osier weevil has a widespread in China, stretching from 33°21' to 51°42' N latitude and 83°00' to 132°58' E longitude, and distributes in forms of big or small patches or sports uncontinously. According to the analysis of meteorological data, the temperature and humidity threshold for osier weevil's distribution were determined by methods of PCA (Principle Component Analysis) and RA(Relativity Analysis): January temperature is -30~ 0℃. Annual temperature -4~13℃, Annual precipitation from 411~ 1,136 min.The areas with January temperature under 0℃, annual temperature above 0℃ and annual precipitation of 400~ 800 mm are the optimum distributing places for osier weevil in China.展开更多
The experiment was mainly used to study the effect of insect-proof net mulching cultivation technology on the temperature and humidity of the greenhouse and the spring shoot growth of citrus Shatangju. The results sho...The experiment was mainly used to study the effect of insect-proof net mulching cultivation technology on the temperature and humidity of the greenhouse and the spring shoot growth of citrus Shatangju. The results showed that the 40-mesh translucent insect-proof net had a positive effect on the spring shoot growth of Shatangju in the spring from January to April. In the meantime,according to the change of the temperature and humidity inside and outside the insect-proof net and the change of quantity of Aleyrodidae,Tetranychidae and Phyllocnisidae,it was found that the role of insect-proof net in enhancing the spring shoot growth of Shatangju was possibly achieved by the regulation of citrus pests and the temperature and humidity inside the net.展开更多
Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of...Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of rooms facing north-south under different weather conditions. Significant warming effect has been identified in terms of lowest and daily-mean indoor temperature in the area of Kunming. The heating amplitude ranges from 7.7C to 10.0C and from 4.6C to 5.8C for the interior part of rooms facing the south and from 4.6C to 7.0C and from 1.3C to 4.4C for the interior part of rooms facing the north, respectively for the two elements. The highest air temperature is higher indoor than outdoor for rooms facing the south, but otherwise is usually true for rooms facing the north. Additional findings point out that buildings not only help maintain relatively warm indoor temperature but delay its variation. The diurnal cycle of temperature indoor is smaller and ranges by 40% ~ 48% for south-facing rooms, and by 20% ~ 30% for north-facing rooms, than outdoor, and the highest temperature is about 2 hours late inside the room than outside. It shows how inertly indoor temperature varies. The work also finds that relative humidity is less indoor in southward rooms than in northward ones and difference is the largest on fine days but the smallest when it is overcast. For the diurnal variation, the indoor relative humidity is large at nighttime with small amplitude but small during daytime with large amplitude. The above-presented results can be served as scientific foundation for more research on climate in low-latitude cities and rational design of urban architectures.展开更多
A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations...A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.展开更多
基金supported by the National Key R&D Program of China(2017YFA0605101)the National Natural Science Foundation of China(31770489,41273098 and 31621091)
文摘The vertical distribution of vegetation types along an elevational gradient in mountain areas largely depends on the elevational changes in air temperature and humidity. In this study, we presented the seasonal and diurnal variations in the elevational gradients of air temperature and humidity on the southern and northern slopes in the middle Tianshan Mountain Range using data collected throughout the year via HOBO data loggers. The measurements were conducted at 12 different elevations from 1548 to 3277 m from September 2004 to August 2005. The results showed that the annual mean air temperature decreased along the elevational gradients with temperature lapse rates of(0.71±0.20)°C/100 m and(0.59±0.05)°C/100 m on the northern and southern slopes, respectively. The annual mean absolute humidity significantly decreased with increasing elevation on the northern slope but showed no significant trend on the southern slope. The annual mean relative humidity did not show a significant trend on the northern slope but increased with increasing elevation on the southern slope. The mean air temperature lapse rate exhibited significant seasonal variation, which is steeper insummer and shallower in winter, and this value varied between 0.37°C/100 m and 0.75°C/100 m on the southern slope and between 0.30°C/100 m and 1.02°C/100 m on the northern slope. The mean absolute and relative humidity also exhibited significant seasonal variations on both slopes, with the maximum occurring in summer and the minimum occurring in winter or spring. The monthly diurnal range of air temperature on both slopes was higher in spring than in winter. The annual range of air temperature on the southern slope was higher than that on the northern slope. Our results suggest that significant spatiotemporal variations in humidity and temperature lapse rate are useful when analyzing the relationships between species range sizes and climate in mountain areas.
基金supported by National Natural Science Foundation of China(No.12272184).
文摘The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.
基金supported by the Performance Incentive and Guidance Project for Scientific Research Institutions,China(cstc2022jxjl80028)the General Project of Chongqing Natural Science Foundation,China(cstc2021jcyj-msxmX0747)+2 种基金the Youth Innovation Team Project of Chongqing Academy of Agricultural Sciences,China(NKY-2018QC02)the Jiangjin Experimental Station of National Germplasm Resources Observation,China(NAES025GR05)the Chongqing Technical Innovation and Application Development Special Project,China(CSTB2022T1AD-KPX0008).
文摘Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.
基金supported by the National Natural Science Foundation of China (30971727,31171479)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China+4 种基金the Key Laboratory Foundation of Jiangsu Province,China (10KJA210057)the Doctoral Advisor Foundation of Education Department of China(20113250110001)the Natural Science Foundation of Jiangsu Province,China (BK2009324)the New Century Academic Leader Project,Yangzhou University of Chinathe Qing-Lan Project,Jiangsu Provincial Educational Department,China
文摘The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringiensis (Bt) cotton. The unstable resistance of Bt cotton to bollworms has been correlated with the reduced expression of CrylAc δ-endotoxin. The objective of this study was to investigate the effects of combined temperature and relative humidity stresses on the leaf CrylAc insecticidal protein expression during critical developmental stages. The study was undertaken on two transgenic cotton cultivars that share same parental background, Sikang 1 (a conventional cultivar) and Sikang 3 (a hybrid cultivar), during the 2007 and 2008 growing seasons at the Yangzhou University Farm, Yangzhou, China. The study was arranged with two factors that consisted of temperature (two levels) and relative humidity (three levels). The six T/RH treatments were 37℃/95%, 37℃/70%, 37℃/50%, 18℃/95%, 18℃/70%, and 18℃/50%. In 2007, the six treatments were imposed to the plants at peak flowering stage for 24 h; in 2008, the six treatments were applied to the plants at peak square, peak flowering, and peak boll stages for 48 h. The results of the study indicated that the leaf insecticidal protein expression in CrylAc was significantly affected by extreme temperature only at peak flowering stage, and by both extreme temperature and relative humidity during boll filling stage. The greatest reductions were observed when the stresses were applied at peak boll stage. In 2008, after 48 h stress treatment, the leaf Bt endotoxin expression reduced by 25.9-36.7 and 23.6-40.5% at peak boll stage, but only by 14.9-26.5 and 12.8-24.0% at peak flowering stage for Sikang 1 and Sikang 3, respectively. The greatest reduction was found under the low temperature combined with low relative humidity condition for both years. It is believed that the temperature and relative humidity stresses may be attributed to the reduced efficacy of Bt cotton in growing conditions in China, where extreme temperatures often increase up to 35-40℃ and/or decrease down to 15-20℃, and relative humidity may reach to 85-95% and/or reduce to 40-55% during the cotton growing season.
文摘For improving the performance of stationary PEFC (polymer electrolyte fuel cell) system, the cell operating temperature up to 90℃ will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat and mass transfer analysis is required. The purpose of this study is to analyze the impact of relative humidity of supply gas on temperature distribution on the backside of separator in single ceil of PEFC using Nation membrane at higher temperature e.g. 90℃. The in-plane temperature distribution when power was being generated was measured using thermograph with various relative humidity of supply gases. It was found that the in-plane temperature distribution at the anode was more even than that at the cathode irrespective of the relative humidity of supply gas at the anode and the cathode. The temperature elevated along gas flow through the gas channel at the cathode irrespective of relative humidity of supply gas at the anode and the cathode. The in-plane temperature distribution at the cathode was narrower with the increase in Tini irrespective of relative humidity of supply gas at the cathode, while it was not observed when changing the relative humidity of supply gas at the anode. When the relative humidity of supply gas at cathode decreased, the in-plane temperature distribution at the anode was wider compared to decreasing the relative humidity of supply gas at the anode. The study concluded that the impact of relative humidity of supply gas at both anode and cathode had little impact on the in-plane temperature distribution at the cathode.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(14)2112]~~
文摘In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the temperature and humidity of plastic greenhouse were studied. The results showed that the ventilation mode of opening side window and roof window could effectively reduce the temperature and humidity at the plant canopy height, which was conducive to the growth of plant in greenhouse.
基金Under the auspices of National Natural Science Foundation of China(No.41871343)Major Project of National Natural Science Foundation of China(No.41590842)Strategic Priority Research Program A of the Chinese Academy of Sciences(No.XDA23100201)
文摘The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands(UHIs).Air temperature and relative humidity are two main factors of thermal environmental comfort and have a critical impact on the urban environmental quality of human settlements.We measured the 2-m height air temperature and relative humidity at the Beijing Olympic Park and a nearby building roof for more than 1 year to elucidate seasonal variations in air temperature and relative humidity,as well as to investigate the outdoor thermal comfort.The results showed that the lawn of the park could,on average,reduce the air temperature by(0.80±0.19)℃,and increase the relative humidity by(5.24±2.91)% relative to the values measured at the building roof during daytime.During the nighttime,the lawn of the park reduced the air temperature by(2.64±0.64)℃ and increased the relative humidity by(10.77±5.20)%.The park was cooler and more humid than surrounding building area,especially in night period(more pronounced cooling with 1.84℃).Additionally,the lawn of the park could improve outdoor thermal comfort through its cooling and humidifying effects.The level of thermal comfort in the park was higher than that around the building roof for a total of 11 days annually in which it was above one or more thermal comfort levels(average reduced human comfort index of 0.92)except during the winter.
文摘A novel embedded sensor network records changes in key climatic-environmental variables over a range of altitude in the BaekduDaegan Mountain (BDM) of Gangwon Province in Korea, a protected mountain region with unique biodiversity undergoing climate change research. The investigated area is subdivided into three horizontal north-south study areas. Three variables, temperature (T, °C), relative humidity (RH, %), and light intensity (LI, lumens m-2, or lux, lx), have been continuously measured at hourly intervals from June, 2olo to September, 2011 using HOBO H8 devices at lO fixed study sites. These hourly observations are aggregated to monthly, seasonal and annual mean values, and results are summarized to inaugurate a long-term climate change investigation. A region wide T difference in accordance with altitude, or lapse rate, over the interval is calculated as o.4°C l00 m-1. T lapse rates change seasonally, with winter lapse rates being greater than those of summer. RH is elevated in summer compared to other seasons. LI within forestland is lower during summer and higher during other seasons. The obtained results could closely relate to the vegetation type and structure and the terrain state since data loggers were located in forestland.
基金supported in part by the National Key Research and Development Program of China under Grant No.2018YFC1507302in part by the National Natural Science Foundation of China under Grant No.41975028。
文摘A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and partly cloudy conditions from FY-4 A GIIRS(geostationary interferometric infrared sounder) observations. Radiosonde observations from upper-air stations in China and level-2 operational products from the Chinese National Satellite Meteorological Center(NSMC)during the periods from December 2019 to January 2020(winter) and from July 2020 to August 2020(summer) are used to validate the accuracies of the retrieved temperature and humidity profiles. Comparing the 1 D-Var-retrieved profiles to radiosonde data, the accuracy of the temperature retrievals at each vertical level of the troposphere is characterized by a root mean square error(RMSE) within 2 K, except for at the bottom level of the atmosphere under clear conditions. The RMSE increases slightly for the higher atmospheric layers, owing to the lack of temperature sounding channels there.Under partly cloudy conditions, the temperature at each vertical level can be obtained, while the level-2 operational products obtain values only at altitudes above the cloud top. In addition, the accuracy of the retrieved temperature profiles is greatly improved compared with the accuracies of the operational products. For the humidity retrievals, the mean RMSEs in the troposphere in winter and summer are both within 2 g kg^(–1). Moreover, the retrievals performed better compared with the ERA5 reanalysis data between 800 h Pa and 300 h Pa both in summer and winter in terms of RMSE.
文摘Rates of fixation in chromated copper arsenate (CCA-C) treated red pine (Pinus resinosa Ait.) and southern pine (Pinus spp) sapwood specimens using retention of 1.5, 2.0, 6.4 kg·m?3 are compared at temperature (T) ranging from 70°C to 50°C and 5 different relative humidity (RH) conditions. The samples were investigated using the expressate method to follow chromium fixation. Red pine fixes faster than southern pine under all 11 post treatment schedules. The fixation rates for both species are not significantly different while the blocks were fixed under 6 fixation/drying schedules that differed only in the order of T/RH conditions applied. The rate of fixation of all samples in any fixation stage were reduced when the blocks were fixed under lower humidity conditions in spite of no change in chamber temperature. Some of this influence can be attributed to the effect of humidity on heat transfer into the wood and cooling of the wood surface.
基金supported by funds from the National Key Research and Development Program Global Change and Mitigation Project [grant number 2017YFA0604004]the National Natural Science Foundation of China [grant numbers41675100,91737306 and U1811464]provided by the SCSIO under the project ‘Scientific investigation of the Eastern Indian Ocean in 2018’,funded by the NSFC(NORC2018-10)
文摘It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) temperature and relative humidity profiles from three reanalysis products (JRA-55, MERRA2, and FGOALS-f2) with shipboard global positioning system (GPS) sounding measurements obtained during the Eastern Indian Ocean Open Cruise in spring 2018. The FGOALS-f2 reanalysis product is based on the initialization module of a sub-seasonal to seasonal prediction system with a nudging-based data assimilation method. The results indicated that:(1) both JRA-55 and MERRA2 were reliable in characterizing the temperature profile from 850 to 600 hPa, with a maximum deviation of about <0.5℃. Both datasets showed a large negative deviation below 825 hPa, with a maximum bias of about 2℃ at 1000 hPa and 1.5℃ at 900 hPa, respectively.(2) JRA-55 showed good performance in characterizing the relative humidity profile above 850 hPa, with a maximum deviation of < 8%, while it showed much wetter conditions below 850 hPa. MERRA2 overestimated the relative humidity in the middle to lower troposphere, with a maximum deviation of about 15% at 925 hPa.(3) The FGOALS-f2 reanalysis product more accurately reproduced the temperature profile in the marine atmospheric boundary layer over the EEIO than that in JRA-55 and MERRA2, but showed much wetter conditions than the GPS sounding observations, with a maximum deviation of up to 20% at 600 hPa. Future applications of GPS sounding datasets are discussed.
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50539010)the National Natural Science Foundation of China (Grant No. 50779010)
文摘A study on the autogenous shrinkage (AS) of concrete from a mesocosmic perspective was carried out using numerical simulation technology. The temperature history and the autogenous relative humidity (ARH), two factors that have been shown to have occasional influence on this process in previous studies, were introduced into this study. According to these concepts, a program for simulation of the temperature field, humidity field, and stress field based on the equivalent age method and a fully automatic aggregate modeling tool were used. With the help of these programs, the study of a small concrete specimen provided some useful conclusions: the aggregate and the matrix show distinct distribution properties in the temperature field, humidity field, and stress field; the aggregate-matrix interface has a high possibility of becoming the location of the initial cracking caused by AS of concrete; the distribution of random aggregates is extremely important for mesoscopical analysis; and the temperature history is the main factor affecting the AS of concrete. On the whole, inherent mechanisms and cracking mechanisms of AS of concrete can be explained more reasonably and realistically only by considering the different characteristics of material phases and the effects of temperature and humidity.
基金Major National Basic Research Program of China(973 Program)on Global Change(2010CB951902)National Natural Science Foundation of China(41221064)China R&D Special Fund for Public Welfare Industry(Meteorology:GYHY201306068)
文摘Using hourly rainfall intensity, daily surface air temperature, humidity and low-level dew point depressions at55 stations in the southeast coast of China, and sea surface temperature from reanalysis in the coastal region, this paper analyzes the connection between peak intensity of extreme afternoon short-duration rainfall(EASR) and humidity as well as surface air temperature. The dependency of extreme peak intensity of EASR on temperature has a significant transition. When daily highest surface temperature is below(above) 29°C, the peak rainfall intensity shows an ascending(descending) tendency with rising temperature. Having investigated the role of moisture condition in the variation of EASR and temperature, this paper discovered that the decrease of peak rainfall intensity with temperature rising is connected with the variation of relative humidity. At higher temperatures, the land surface relative humidity decreases dramatically as temperature further increases. During this process, the sea surface temperature maintains basically unchanged, resulting in indistinct variations of water vapor content at seas. As water vapor over land is mainly contributed by the quantitative moisture transport from adjacent seas, the decline of relative humidity over land will be consequently caused by the further rise of surface air temperature.
基金National Natural Science Foundation of China(91215302,51278308)Open Project for State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics(LAPC)
文摘One-dimensional retrieval was performed on Typhoon Haiyan utilizing the advanced technology microwave sounder onboard the satellite Suomi NPP to retrieve the temperature and water vapor profiles of the typhoon.Comparisons of the retrieved profiles and ECMWF reanalysis were made to assess the results. The main conclusions are as follows.(1) The results have high spatial resolution and therefore can precisely represent the temperature and humidity distribution of the typhoon.(2) The retrieved temperature is low in the areas of low temperature and high in the areas of high temperature; similar patterns are observed for humidity. This means that systematic revision may be needed during routine application.(3) The results of the retrieved temperature and humidity profiles are generally accurate, which is quite important for typhoon monitoring.
文摘Evapotranspiration in forests has been researched for a long time because it serves an important role in water resource issues and biomass production. By applying the reciprocal analysis based on the Bowen ratio concept to the canopy surface, the sum result of sensible and latent heat fluxes, i.e., actual evapotranspiration (ET), is estimated from engineering aspect using the net radiation (Rn) and heat flux into the ground (G). The new method uses air temperature and humidity at a single height by determining the relative humidity (rehs) using the canopy temperature (Ts). The validity of the method is confirmed by the latent heat flux (lE) and sensible heat flux (H) observed by mean of eddy covariance method. The heat imbalance is corrected by multiple regression analysis. The temporal change of lE and H at the canopy surface is clarified using hourly and yearly data. Furthermore, the observed and estimated monthly evapotranspiration of the sites are compared. The research is conducted using hourly data and the validation of the method is conducted using observed covariance at five sites in the world using FLUXNET.
基金funded by the Ministry of Science and Innovation of Spain through the research project(PID2020-113247RA-C22)by the National Fund for Scientific and Technological Development of Peru trough the PERMAFROST ENSO research project(081-2021)。
文摘Weather and climate conditions drive the evolution of tropical glaciers which play an important role as water reservoirs for Peruvian inhabitants in the arid coast and semi-arid Andean region.The scarcity of long-term high-quality observations over Peruvian glaciers has motivated the extensive use of reanalysis data to describe the climatic evolution of these glaciers.However,the representativeness and uncertainties of these reanalysis products over these glaciers are still poorly constrained.This study evaluates the ability of the ERA-Land reanalysis(ERAL)to reproduce hourly and monthly 2 m air temperature and relative humidity(T2m and Rh2m,respectively)over several Peruvian glaciers.We compared the ERAL with data from four on-glacier automatic weather stations(AWS),whose hourly time series were completed with nearby stations,for the period January 2017 to December 2019.Results indicates a better performance of the reanalysis for T2m(r>0.80)than for Rh2m(~0.4<r<~0.6)in all four glaciers.Concerning the observations,both parameters show a daily cycle influenced by the presence of the glacier.This influence is more prominent during the dry months when the so-called glacier damping and cooling effects are stronger.On a monthly time scale,the ERAL validation for both parameters are better in wet outer tropical sites(RMSE between±0.2℃ for T2m and between 3%-7% for Rh2m)rather than in dry outer tropical sites(RMSE between±0.2℃ for T2m and between 3%-7% for Rh2m).Among all sites considered in the study,the Rh2m bias is the highest in the Cavalca glacier(correlation of 0.81;RMSE 13%,MAE 11% and bias 8.3%)and the lowest in Artesonraju glacier(correlation of 0.96;RMSE 3%;MAE 2.3% and bias-0.8%).Based on certain considerations outlined in this paper,it is appropriate to use ERAL to characterize T2m and Rh2m conditions on Peruvian glaciers,particularly in the wet outer tropics.
文摘A distribution map of osier weevil (Crytorrynchus lapathi L.) was drown up based on widely collecting information and field survey. The results showed that Osier weevil has a widespread in China, stretching from 33°21' to 51°42' N latitude and 83°00' to 132°58' E longitude, and distributes in forms of big or small patches or sports uncontinously. According to the analysis of meteorological data, the temperature and humidity threshold for osier weevil's distribution were determined by methods of PCA (Principle Component Analysis) and RA(Relativity Analysis): January temperature is -30~ 0℃. Annual temperature -4~13℃, Annual precipitation from 411~ 1,136 min.The areas with January temperature under 0℃, annual temperature above 0℃ and annual precipitation of 400~ 800 mm are the optimum distributing places for osier weevil in China.
基金Supported by Special Construction Project of Modern Agriculture(Citrus)Industry Technology System(cars-27)
文摘The experiment was mainly used to study the effect of insect-proof net mulching cultivation technology on the temperature and humidity of the greenhouse and the spring shoot growth of citrus Shatangju. The results showed that the 40-mesh translucent insect-proof net had a positive effect on the spring shoot growth of Shatangju in the spring from January to April. In the meantime,according to the change of the temperature and humidity inside and outside the insect-proof net and the change of quantity of Aleyrodidae,Tetranychidae and Phyllocnisidae,it was found that the role of insect-proof net in enhancing the spring shoot growth of Shatangju was possibly achieved by the regulation of citrus pests and the temperature and humidity inside the net.
文摘Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of rooms facing north-south under different weather conditions. Significant warming effect has been identified in terms of lowest and daily-mean indoor temperature in the area of Kunming. The heating amplitude ranges from 7.7C to 10.0C and from 4.6C to 5.8C for the interior part of rooms facing the south and from 4.6C to 7.0C and from 1.3C to 4.4C for the interior part of rooms facing the north, respectively for the two elements. The highest air temperature is higher indoor than outdoor for rooms facing the south, but otherwise is usually true for rooms facing the north. Additional findings point out that buildings not only help maintain relatively warm indoor temperature but delay its variation. The diurnal cycle of temperature indoor is smaller and ranges by 40% ~ 48% for south-facing rooms, and by 20% ~ 30% for north-facing rooms, than outdoor, and the highest temperature is about 2 hours late inside the room than outside. It shows how inertly indoor temperature varies. The work also finds that relative humidity is less indoor in southward rooms than in northward ones and difference is the largest on fine days but the smallest when it is overcast. For the diurnal variation, the indoor relative humidity is large at nighttime with small amplitude but small during daytime with large amplitude. The above-presented results can be served as scientific foundation for more research on climate in low-latitude cities and rational design of urban architectures.
基金The National Natural Science Funds Committee(50174035)
文摘A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.