期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on properties of hollow glass microspheres/epoxy resin composites applied in deep rock in-situ temperature-preserved coring 被引量:3
1
作者 Zhi-Qiang He Yang Yang +7 位作者 Bo Yu Jian-Ping Yang Xiang-Biao Jiang Bo Tian Man Wang Xi-Yuan Li Si-Qing Sun Hui Sun 《Petroleum Science》 SCIE CAS CSCD 2022年第2期720-730,共11页
Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeabil... Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeability,which will lead to the distortion of the petroleum resources reserves assessment.Therefore,the hollow glass microspheres/epoxy resin(HGM/EP)composites were innovatively proposed as temperature preserved materials for in-situ temperature-preserved coring(ITP-Coring),and the physical,mechanical,and temperature preserved properties were evaluated.The results indicated that:As the HGM content increased,the density and mechanical properties of the composites gradually decreased,while the water absorption was deficient without hydrostatic pressure.For composites with 50 vol%HGM,when the hydrostatic pressure reached 60 MPa,the water absorption was above 30.19%,and the physical and mechanical properties of composites were weakened.When the hydrostatic pressure was lower than 40 MPa,the mechanical properties and thermal conductivity of composites were almost unchanged.Therefore,the composites with 50 vol%HGM can be used for ITPCoring operations in deep environments with the highest hydrostatic pressure of 40 MPa.Finally,to further understand the temperature preserved performance of composites in practical applications,the temperature preserved properties were measured.An unsteady-state heat transfer model was established based on the test results,then the theoretical change of the core temperature during the coring process was obtained.The above tests results can provide a research basis for deep rock in-situ temperature preserved corer and support accurate assessment of deep petroleum reserves. 展开更多
关键词 Deep rock in-situ temperature-preserved coring(ITP-Coring) Hollow glass microspheres/epoxy resin composites Hydrostatic pressure Unsteady-state heat transfer model
下载PDF
Hollow glass microspheres/silicone rubber composite materials toward materials for high performance deep in-situ temperaturepreserved coring 被引量:1
2
作者 Jian-Ping Yang Ling Chen +6 位作者 Xiao-Bin Gu Zhi-Yu Zhao Cheng-Hang Fu Dong-Sheng Yang Dong-Zhuang Tian Zhi-Sheng Chen He-Ping Xie 《Petroleum Science》 SCIE CAS CSCD 2022年第1期309-320,共12页
Deep petroleum resources are stored under high temperature and pressure conditions,with the temperature having a significant influence on the properties of rocks.Deep in-situ temperature-preserved coring(ITP-coring)de... Deep petroleum resources are stored under high temperature and pressure conditions,with the temperature having a significant influence on the properties of rocks.Deep in-situ temperature-preserved coring(ITP-coring)devices were developed to assess deep petroleum reserves accurately.Herein,hollow glass microspheres(HGMs)/silicone rubber(SR)composites that exhibit excellent thermal insulation properties were prepared as thermal insulation materials for deep ITP-coring devices.The mechanism and process of heat transfer in the composites were explored,as well as their other properties.The results show that the HGMs exhibit good compatibility with the SR matrix.When the volume fraction of the HGMs is increased to 50%,the density of the HGMs/SR composites is reduced from 0.97 to 0.56 g/cm^(3).The HGMs filler introduces large voids into the composites,reducing their thermal conductivity to 0.11 W/m·K.The addition of HGMs into the composites further enhances the thermal stability of the SR,wherein the higher the HGMs filler content,the better the thermal stability of the composites.HGMs significantly enhance the mechanical strength of the SR.HGMs increase the compressive strength of the composites by 828%and the tensile strength by 164%.Overall,HGMs improve the thermal insulation,pressure resistance,and thermal stability of HGMs/SR composites. 展开更多
关键词 In-situ temperature-preserved coring(ITP-coring) Deep in-situ conditions Thermal insulation materials HGMs/SR composites
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部