At present,long-term continuous cropping in agricultural production has formed a relatively common development trend.With the increase of continuous cropping years,soil phenolic acids are also affected to varying degr...At present,long-term continuous cropping in agricultural production has formed a relatively common development trend.With the increase of continuous cropping years,soil phenolic acids are also affected to varying degrees.This paper summarized the effects of continuous cropping on soil phenolic acids and the research progress of continuous cropping obstacle reduction techniques,aiming at providing theoretical basis and technical support for the research of continuous cropping obstacle reduction techniques and promoting the healthy and sustainable development of modern agriculture.展开更多
Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overco...Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.展开更多
BACKGROUND Coronary computed tomography angiography(CCTA)is the preferred noninvasive examination method for coronary heart disease.However,the radiation from computed tomography has become a concern since public awar...BACKGROUND Coronary computed tomography angiography(CCTA)is the preferred noninvasive examination method for coronary heart disease.However,the radiation from computed tomography has become a concern since public awareness of radiation hazards continue to increase.AIM To explore the value of multiple dose reduction techniques for CCTA.METHODS Consecutive normal and overweight patients were prospectively divided into two groups:Group A1,patients who received multiple dose reduction scans(n=82);and group A2,patients who received conventional scans(n=39).The scan parameters for group A1 were as follows:Isocentric scan,tube voltage=80 kV,and tube current control using 80%smart milliampere.The scan parameters for group A2 were as follows:Normal position,tube voltage=100 kV,and smart milliampere.RESULTS The average effective doses(EDs)for groups A1 and A2 were 1.13±0.35 and 3.36±1.30 mSv,respectively.There was a statistically significant difference in ED between the two groups(P<0.01).Furthermore,noise was significantly lower,and both signal-to-noise ratio and contrast signal-to-noise ratio were higher in group A2 when compared to group A1(P<0.01).Moreover,the subjective image quality(IQ)scores were excellent in both groups,in which there was no significant difference in subjective IQ score between the two groups(P=0.12).CONCLUSION Multiple dose reduction scan techniques can significantly decrease the ED of patients receiving CCTA examinations for clinical diagnosis.展开更多
Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such...Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented.展开更多
Based on the upper bound theorem of limit analysis,the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique.To analyze the influence of the pore pres...Based on the upper bound theorem of limit analysis,the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique.To analyze the influence of the pore pressure on the factor of safety for shallow tunnel,the power of pore pressure is regarded as a power of external force in the energy calculation.Using the rigid multiple-block failure mechanism,the objective function for the factor of safety is constructed and the optimal solutions are derived by employing the sequential quadratic programming.According to the results of optimization calculation,the factor of safety of shallow tunnel for different pore pressure coefficients and variational groundwater tables are obtained.The parameter analysis shows that the pore pressure coefficient and the location of the groundwater table have significant influence on the factor of safety for shallow tunnel.展开更多
In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal di...In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal distribution. The distribution parameters were obtained by kinetic data fitting, which depends on the chemical and geometric characteristics of both the iron oxide and the promoter.展开更多
When the slope is in critical limit equilibrium(LE) state, the strength parameters have different contribution to each other on maintaining slope stability. That is to say that the strength parameters are not simultan...When the slope is in critical limit equilibrium(LE) state, the strength parameters have different contribution to each other on maintaining slope stability. That is to say that the strength parameters are not simultaneously reduced. Hence, the LE stress method is established to analyze the slope stability by employing the double strengthreduction(DSR) technique in this work. For calculation model of slope stability under the DSR technique, the general nonlinear Mohr–Coulomb(M–C) criterion is used to describe the shear failure of slope. Meanwhile, the average and polar diameter methods via the DSR technique are both adopted to calculate the comprehensive factor of safety(FOS) of slope. To extend the application of the polar diameter method, the original method is improved in the proposed method. After comparison and analysis on some slope examples, the proposed method's feasibility is verified. Thereafter, the stability charts of slope suitable for engineering application are drawn. Moreover, the studies show that:(1) the average method yields similar results as that of the polardiameter method;(2) compared with the traditional uniform strength-reduction(USR) technique, the slope stability obtained using the DSR techniquetends to be more unsafe; and(3) for a slope in the critical LE state, the strength parameter φ, i.e., internal friction angle, has greater contribution on the slope stability than the strength parameters c, i.e., cohesion.展开更多
In the field of organic syntheses, the development of environmentally friendly methods based on the concept of green chemistry has been always required. In response to this requirement, we reported solvent- and cataly...In the field of organic syntheses, the development of environmentally friendly methods based on the concept of green chemistry has been always required. In response to this requirement, we reported solvent- and catalyst-free syntheses of imines using the pressure reduction technique as a key technology. We found that this reaction proceeded very rapidly in the initial stage, but its rate decreased with the passage of time. It was also found that the reaction of benzaldehyde with aniline had a specificity that the phase transition occurred. In this method, the desired imines could be obtained in good to excellent yields, but target compounds had to be given by purifications using organic solvents. Therefore, we tried to develop the perfect synthetic method of imine derivatives without organic or inorganic solvents. We selected two methods and took them into this investigation. One was exactly mixing (1:1, substance ratio) aldehydes and amines and the other was employing lower pressure (>0.1 mmHg, previous method: 1.0 mmHg) at the pressure reducing technique. When this improved synthetic method was performed, it was revealed that pure target imines were obtained in excellent yields without any purification.展开更多
Recently, the development of environmentally friendly syntheses of imine derivatives, which were attracting great attention for their reactivity and structure in various fields, progressed rapidly because the concept ...Recently, the development of environmentally friendly syntheses of imine derivatives, which were attracting great attention for their reactivity and structure in various fields, progressed rapidly because the concept of green chemistry had deeply penetrated into society. In our previous work, we had reported new synthetic methods of imine derivatives using some active amines under solvent- and catalyst-free reaction conditions. This synthetic reaction proceeded smoothly and target compounds were obtained in excellent yields. In this system, when less reactive amines were used as substrates, the synthetic reaction was not finished in the short reaction time, and the corresponding compounds were given in moderate yields. In order to solve this point, we tried to improve the reaction conditions of this method. Through this improvement, it was found that pure target compounds could be obtained in excellent yields by using 1.1 equivalents of less reactive amines to aldehydes and extending the reaction time compared with our previous work. In this paper, we will introduce the detail of this study, and also report the result of the investigation of the reaction property by computational chemistry.展开更多
In this paper, three techniques, line run coding, quadtree DF (Depth-First) representation and H coding for compressing classified satellite cloud images with no distortion are presented. In these three codings, the f...In this paper, three techniques, line run coding, quadtree DF (Depth-First) representation and H coding for compressing classified satellite cloud images with no distortion are presented. In these three codings, the first two were invented by other persons and the third one, by ourselves. As a result, the comparison among their compression rates is. given at the end of this paper. Further application of these image compression technique to satellite data and other meteorological data looks promising.展开更多
Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an ef...Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an effective synthesis method if an aldehyde and an amine could be reacted to give an imine in good yield under solvent- and catalyst-free conditions. In fact, we tried the reaction of benzaldehyde with various amines under solvent- and catalyst-free conditions followed by removal of water that was produced in the reaction system by a vacuum pump, and desired imines could be obtained in good yields. Observation of this reaction using a nuclear magnetic resonance spectrometer revealed that the reaction rate was extremely fast at the initial stage but slowed over time. However, the reaction of benzaldehyde with aniline differed greatly, and the reaction rate dramatically improved in 47 - 48 minutes after the start of the reaction. At this time, we found that the reaction system underwent a phase transition from the liquid phase to the solid phase.展开更多
Association rules’learning is a machine learning method used in finding underlying associations in large datasets.Whether intentionally or unintentionally present,noise in training instances causes overfitting while ...Association rules’learning is a machine learning method used in finding underlying associations in large datasets.Whether intentionally or unintentionally present,noise in training instances causes overfitting while building the classifier and negatively impacts classification accuracy.This paper uses instance reduction techniques for the datasets before mining the association rules and building the classifier.Instance reduction techniques were originally developed to reduce memory requirements in instance-based learning.This paper utilizes them to remove noise from the dataset before training the association rules classifier.Extensive experiments were conducted to assess the accuracy of association rules with different instance reduction techniques,namely:DecrementalReduction Optimization Procedure(DROP)3,DROP5,ALL K-Nearest Neighbors(ALLKNN),Edited Nearest Neighbor(ENN),and Repeated Edited Nearest Neighbor(RENN)in different noise ratios.Experiments show that instance reduction techniques substantially improved the average classification accuracy on three different noise levels:0%,5%,and 10%.The RENN algorithm achieved the highest levels of accuracy with a significant improvement on seven out of eight used datasets from the University of California Irvine(UCI)machine learning repository.The improvements were more apparent in the 5%and the 10%noise cases.When RENN was applied,the average classification accuracy for the eight datasets in the zero-noise test enhanced from 70.47%to 76.65%compared to the original test.The average accuracy was improved from 66.08%to 77.47%for the 5%-noise case and from 59.89%to 77.59%in the 10%-noise case.Higher confidence was also reported in building the association rules when RENN was used.The above results indicate that RENN is a good solution in removing noise and avoiding overfitting during the construction of the association rules classifier,especially in noisy domains.展开更多
Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the perform...Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the performance of the machine learning algorithm such as Support Vector Machine(SVM)is affected when dealing with an imbalanced dataset.The classification accuracy is mostly skewed toward the majority class and poor results are exhibited in the prediction of minority-class samples.In this paper,a hybrid approach combining data pre-processing technique andSVMalgorithm based on improved Simulated Annealing(SA)was proposed.Firstly,the data preprocessing technique which primarily aims at solving the resampling strategy of handling imbalanced datasets was proposed.In this technique,the data were first synthetically generated to equalize the number of samples between classes and followed by a reduction step to remove redundancy and duplicated data.Next is the training of a balanced dataset using SVM.Since this algorithm requires an iterative process to search for the best penalty parameter during training,an improved SA algorithm was proposed for this task.In this proposed improvement,a new acceptance criterion for the solution to be accepted in the SA algorithm was introduced to enhance the accuracy of the optimization process.Experimental works based on ten publicly available imbalanced datasets have demonstrated higher accuracy in the classification tasks using the proposed approach in comparison with the conventional implementation of SVM.Registering at an average of 89.65%of accuracy for the binary class classification has demonstrated the good performance of the proposed works.展开更多
The influence of processing parameters ofrelaxation-precipitation-controlling phase transformation (RPC) technique, finish rollingtemperature, reduction ratio and relaxing time on the microstructure was studied byther...The influence of processing parameters ofrelaxation-precipitation-controlling phase transformation (RPC) technique, finish rollingtemperature, reduction ratio and relaxing time on the microstructure was studied bythermo-simulation for a low carbon Nb and Ti containing micro-alloyed steel. The microstructure wasinvestigated by optical microscope, transmission electron microscope and electron back scatterdiffraction (EBSD). The statistical results of the packet size were calculated. It shows that, afterRPC process, the steel is a composite microstructure of bainite and matensite. The bestthermo-simulation process for refinement in this experiment is deformation for 30 percent at 850 degC, and then relaxing at this temperature for 60 s to 200 s. Increasing the reduction ratio from 30percent to 60 or decreasing the deformation temperature to 800 deg C would cause the best relaxationtime to become shorter, increasing the deformation temperature to 900 deg C would cause therefinement effect to be weak.展开更多
In order to study the central quality of continuously cast tool steel slabs, the simple model has been developed to simulate the macrosegregation quality criteria. The model calculates different quality criteria such ...In order to study the central quality of continuously cast tool steel slabs, the simple model has been developed to simulate the macrosegregation quality criteria. The model calculates different quality criteria such as average macro-segregation level criterion “ASL”, its fluctuation level “FSL” and its segregation quality number “SQN”. These criteria are calculated based on the previous measurements of carbon and sulfur concentrations distributions in final region of spray zones and centerline area of lower and upper slab sides. The effect of mechanical soft reduction Technique “MSR” on the slab centerline quality is examined and analyzed. The model results show that MSR affects the quality of centerline areas significantly by different ways based on the casting speed. The experimental and theoretical results clarify that the qualities of different slab sides are different for all collected samples. The model results show also that the accuracy of the macro-segregation quality criteria increases quantitatively with increasing the number of analyzed segregated elements. Therefore, the macrosegregation quality criteria and their distributions can be considered as the most simple and vital tool to evaluate the various slab qualities. Finally, the mechanism of centerline segregation formation with mechanical soft reduction is discussed in this study.展开更多
Crohn's disease,a transmural inflammatory bowel disease,remains a difficult entity to diagnose clinically.Over the last decade,multidetector computed tomography(CT) has become the method of choice for noninvasive ...Crohn's disease,a transmural inflammatory bowel disease,remains a difficult entity to diagnose clinically.Over the last decade,multidetector computed tomography(CT) has become the method of choice for noninvasive evaluation of the small bowel,and has proved to be of significant value in the diagnosis of Crohn's disease.Advancements in CT enterography protocol design,three dimensional(3-D) post-processing software,and CT scanner technology have allowed increasing accuracy in diagnosis,and the acquisition of studies at a much lower radiation dose.The cases in this review will illustrate that the use of 3-D technique,proper enterography protocol design,and a detailed understanding of the different manifestations of Crohn's disease are all critical in properly diagnosing the full range of possible complications in Crohn's patients.In particular,CT enterography has proven to be effective in identifying involvement of the small and large bowel(including active inflammation,stigmata of chronic inflammation,and Crohn's-related bowel neoplasia) by Crohn's disease,as well as the extra-enteric manifestations of the disease,including fistulae,sinus tracts,abscesses,and urologic/hepatobiliary/osseous complications.Moreover,the proper use of 3-D technique(including volume rendering and maximum intensity projection) as a routine component of enterography interpretation can play a vital role in improving diagnostic accuracy.展开更多
The development and utilization of renewable clean energy can effectively solve the two major problems of energy and environment. As an efficient power generation device that converts hydrogen energy into electric ene...The development and utilization of renewable clean energy can effectively solve the two major problems of energy and environment. As an efficient power generation device that converts hydrogen energy into electric energy, fuel cell has attracted more and more attention. For fuel cells, the oxygen reduction reaction(ORR) at the cathode is the core reaction, and the design and development of high-performance ORR catalysts remain quite challenging. Since the microenvironment of the active center of single atom catalysts(SACs) has an important influence on its catalytic performance, it has been a research focus to improve the ORR activity and stability of electrocatalysts by adjusting the structure of the active center through reasonable structural regulation methods. In this review, we reviewed the preparation and structure–activity relationship of SACs for ORR. Then, the structural precision regulation methods for improving the activity and stability of ORR electrocatalysts are discussed. And the advanced in-situ characterization techniques for revealing the changes of active sites in the electrocatalytic ORR process are summarized. Finally, the challenges and future design directions of SACs for ORR are discussed. This work will provide important reference value for the design and synthesis of SACs with high activity and stability for ORR.展开更多
This paper proposes a statistical method for damage detection based on the finite element (FE) model reduction technique that utilizes measured modal data with a limited number of sensors. A deterministic damage det...This paper proposes a statistical method for damage detection based on the finite element (FE) model reduction technique that utilizes measured modal data with a limited number of sensors. A deterministic damage detection process is formulated based on the model reduction technique. The probabilistie process is integrated into the deterministic damage detection process using a perturbation technique, resulting in a statistical structural damage detection method. This is achieved by deriving the first- and second-order partial derivatives of uncertain parameters, such as elasticity of the damaged member, with respect to the measurement noise, which allows expectation and covariance matrix of the uncertain parameters to be calculated. Besides the theoretical development, this paper reports numerical verification of the proposed method using a portal frame example and Monte Carlo simulation.展开更多
Based on Arnoldi's method, a version of generalized Arnoldi algorithm has been developed for the reduction of gyroscopic eigenvalue problems. By utilizing the skew symmetry of system matrix, a very simple recurren...Based on Arnoldi's method, a version of generalized Arnoldi algorithm has been developed for the reduction of gyroscopic eigenvalue problems. By utilizing the skew symmetry of system matrix, a very simple recurrence scheme, named gyroscopic Arnoldi reduction algorithm has been obtained, which is even simpler than the Lanczos algorithm for symmetric eigenvalue problems. The complex number computation is completely avoided. A restart technique is used to enable the reduction algorithm to have iterative characteristics. It has been found that the restart technique is not only effective for the convergence of multiple eigenvalues but it also furnishes the reduction algorithm with a technique to check and compute missed eigenvalues. By combining it with the restart technique, the algorithm is made practical for large-scale gyroscopic eigenvalue problems. Numerical examples are given to demonstrate the effectiveness of the method proposed.展开更多
Based on dynamical theories of water waves and dynamics of Mindlin thick plates, the investigation of the wave-induced responses and the vibration reduction of an elastic floating plate are presented using the Wiener-...Based on dynamical theories of water waves and dynamics of Mindlin thick plates, the investigation of the wave-induced responses and the vibration reduction of an elastic floating plate are presented using the Wiener-Hopf technique. Without regard to the case of elastic connector, the calculated results obtained by the present method are in good agreement with those from the literature and the experiment. It can be shown that the present method is valid. Relations between the spring stiffness to be used to connect the sea bottom and the floating plate and the parameters of wave-induced responses of floating plates are investigated using the present method. Therefore, these results can be used as theoretical bases for the design stage of super floating platform systems.展开更多
基金Supported by Scientific Research Fund of Yunnan Education Department(2024Y742,2023Y0863)National Natural Science Foundation of China(42067009)+1 种基金College Students'Innovative Training Plan Program of Yunnan Education Department in 2023(S202311393044,S202311393061)Key Project of Science and Technology Program of Yunnan Province(202202AE090015).
文摘At present,long-term continuous cropping in agricultural production has formed a relatively common development trend.With the increase of continuous cropping years,soil phenolic acids are also affected to varying degrees.This paper summarized the effects of continuous cropping on soil phenolic acids and the research progress of continuous cropping obstacle reduction techniques,aiming at providing theoretical basis and technical support for the research of continuous cropping obstacle reduction techniques and promoting the healthy and sustainable development of modern agriculture.
基金the National Natural Science Foundation of China(No.52072256)Shanxi Science and Technology Major Project(No.20201101016)+1 种基金Key R&D program of Shanxi Province(No.202102030201006)Research Project Supported by Shanxi Scholarship Council of China(HGKY2019031).
文摘Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.
基金Supported by Zhuhai Medical Research Fund,No.ZH3310200001PJL.
文摘BACKGROUND Coronary computed tomography angiography(CCTA)is the preferred noninvasive examination method for coronary heart disease.However,the radiation from computed tomography has become a concern since public awareness of radiation hazards continue to increase.AIM To explore the value of multiple dose reduction techniques for CCTA.METHODS Consecutive normal and overweight patients were prospectively divided into two groups:Group A1,patients who received multiple dose reduction scans(n=82);and group A2,patients who received conventional scans(n=39).The scan parameters for group A1 were as follows:Isocentric scan,tube voltage=80 kV,and tube current control using 80%smart milliampere.The scan parameters for group A2 were as follows:Normal position,tube voltage=100 kV,and smart milliampere.RESULTS The average effective doses(EDs)for groups A1 and A2 were 1.13±0.35 and 3.36±1.30 mSv,respectively.There was a statistically significant difference in ED between the two groups(P<0.01).Furthermore,noise was significantly lower,and both signal-to-noise ratio and contrast signal-to-noise ratio were higher in group A2 when compared to group A1(P<0.01).Moreover,the subjective image quality(IQ)scores were excellent in both groups,in which there was no significant difference in subjective IQ score between the two groups(P=0.12).CONCLUSION Multiple dose reduction scan techniques can significantly decrease the ED of patients receiving CCTA examinations for clinical diagnosis.
基金financial support from the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX24_0690)financial support from the National Natural Science Foundation of China (Project No. 22275088, 52101260)+4 种基金the Project of Shuangchuang Scholar of Jiangsu Province (Project No. JSSCBS20210212)the Fundamental Research Funds for the Central Universities (Project No. 30921011203)the Start-Up Grant (Project No. AE89991/340) from Nanjing University of Science and Technologyfinancial support from the Foundation of Jiangsu Educational Committee (22KJB310008)the Senior Talent Program of Jiangsu University (20JDG073)
文摘Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented.
基金Project(51178468) supported by the National Natural Science Foundation of ChinaProject(2010bsxt07) supported by the Doctoral Dissertation Innovation Fund of Central South University,China
文摘Based on the upper bound theorem of limit analysis,the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique.To analyze the influence of the pore pressure on the factor of safety for shallow tunnel,the power of pore pressure is regarded as a power of external force in the energy calculation.Using the rigid multiple-block failure mechanism,the objective function for the factor of safety is constructed and the optimal solutions are derived by employing the sequential quadratic programming.According to the results of optimization calculation,the factor of safety of shallow tunnel for different pore pressure coefficients and variational groundwater tables are obtained.The parameter analysis shows that the pore pressure coefficient and the location of the groundwater table have significant influence on the factor of safety for shallow tunnel.
文摘In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal distribution. The distribution parameters were obtained by kinetic data fitting, which depends on the chemical and geometric characteristics of both the iron oxide and the promoter.
基金funded by the National Natural Science Foundation of China (Grant No. 51608541)the Postdoctoral Science Foundation of China (Grant No. 2015M580702)the Guizhou Provincial Department of Transportation of China (Grant No. 2014122006)
文摘When the slope is in critical limit equilibrium(LE) state, the strength parameters have different contribution to each other on maintaining slope stability. That is to say that the strength parameters are not simultaneously reduced. Hence, the LE stress method is established to analyze the slope stability by employing the double strengthreduction(DSR) technique in this work. For calculation model of slope stability under the DSR technique, the general nonlinear Mohr–Coulomb(M–C) criterion is used to describe the shear failure of slope. Meanwhile, the average and polar diameter methods via the DSR technique are both adopted to calculate the comprehensive factor of safety(FOS) of slope. To extend the application of the polar diameter method, the original method is improved in the proposed method. After comparison and analysis on some slope examples, the proposed method's feasibility is verified. Thereafter, the stability charts of slope suitable for engineering application are drawn. Moreover, the studies show that:(1) the average method yields similar results as that of the polardiameter method;(2) compared with the traditional uniform strength-reduction(USR) technique, the slope stability obtained using the DSR techniquetends to be more unsafe; and(3) for a slope in the critical LE state, the strength parameter φ, i.e., internal friction angle, has greater contribution on the slope stability than the strength parameters c, i.e., cohesion.
文摘In the field of organic syntheses, the development of environmentally friendly methods based on the concept of green chemistry has been always required. In response to this requirement, we reported solvent- and catalyst-free syntheses of imines using the pressure reduction technique as a key technology. We found that this reaction proceeded very rapidly in the initial stage, but its rate decreased with the passage of time. It was also found that the reaction of benzaldehyde with aniline had a specificity that the phase transition occurred. In this method, the desired imines could be obtained in good to excellent yields, but target compounds had to be given by purifications using organic solvents. Therefore, we tried to develop the perfect synthetic method of imine derivatives without organic or inorganic solvents. We selected two methods and took them into this investigation. One was exactly mixing (1:1, substance ratio) aldehydes and amines and the other was employing lower pressure (>0.1 mmHg, previous method: 1.0 mmHg) at the pressure reducing technique. When this improved synthetic method was performed, it was revealed that pure target imines were obtained in excellent yields without any purification.
文摘Recently, the development of environmentally friendly syntheses of imine derivatives, which were attracting great attention for their reactivity and structure in various fields, progressed rapidly because the concept of green chemistry had deeply penetrated into society. In our previous work, we had reported new synthetic methods of imine derivatives using some active amines under solvent- and catalyst-free reaction conditions. This synthetic reaction proceeded smoothly and target compounds were obtained in excellent yields. In this system, when less reactive amines were used as substrates, the synthetic reaction was not finished in the short reaction time, and the corresponding compounds were given in moderate yields. In order to solve this point, we tried to improve the reaction conditions of this method. Through this improvement, it was found that pure target compounds could be obtained in excellent yields by using 1.1 equivalents of less reactive amines to aldehydes and extending the reaction time compared with our previous work. In this paper, we will introduce the detail of this study, and also report the result of the investigation of the reaction property by computational chemistry.
文摘In this paper, three techniques, line run coding, quadtree DF (Depth-First) representation and H coding for compressing classified satellite cloud images with no distortion are presented. In these three codings, the first two were invented by other persons and the third one, by ourselves. As a result, the comparison among their compression rates is. given at the end of this paper. Further application of these image compression technique to satellite data and other meteorological data looks promising.
文摘Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an effective synthesis method if an aldehyde and an amine could be reacted to give an imine in good yield under solvent- and catalyst-free conditions. In fact, we tried the reaction of benzaldehyde with various amines under solvent- and catalyst-free conditions followed by removal of water that was produced in the reaction system by a vacuum pump, and desired imines could be obtained in good yields. Observation of this reaction using a nuclear magnetic resonance spectrometer revealed that the reaction rate was extremely fast at the initial stage but slowed over time. However, the reaction of benzaldehyde with aniline differed greatly, and the reaction rate dramatically improved in 47 - 48 minutes after the start of the reaction. At this time, we found that the reaction system underwent a phase transition from the liquid phase to the solid phase.
基金The APC was funded by the Deanship of Scientific Research,Saudi Electronic University.
文摘Association rules’learning is a machine learning method used in finding underlying associations in large datasets.Whether intentionally or unintentionally present,noise in training instances causes overfitting while building the classifier and negatively impacts classification accuracy.This paper uses instance reduction techniques for the datasets before mining the association rules and building the classifier.Instance reduction techniques were originally developed to reduce memory requirements in instance-based learning.This paper utilizes them to remove noise from the dataset before training the association rules classifier.Extensive experiments were conducted to assess the accuracy of association rules with different instance reduction techniques,namely:DecrementalReduction Optimization Procedure(DROP)3,DROP5,ALL K-Nearest Neighbors(ALLKNN),Edited Nearest Neighbor(ENN),and Repeated Edited Nearest Neighbor(RENN)in different noise ratios.Experiments show that instance reduction techniques substantially improved the average classification accuracy on three different noise levels:0%,5%,and 10%.The RENN algorithm achieved the highest levels of accuracy with a significant improvement on seven out of eight used datasets from the University of California Irvine(UCI)machine learning repository.The improvements were more apparent in the 5%and the 10%noise cases.When RENN was applied,the average classification accuracy for the eight datasets in the zero-noise test enhanced from 70.47%to 76.65%compared to the original test.The average accuracy was improved from 66.08%to 77.47%for the 5%-noise case and from 59.89%to 77.59%in the 10%-noise case.Higher confidence was also reported in building the association rules when RENN was used.The above results indicate that RENN is a good solution in removing noise and avoiding overfitting during the construction of the association rules classifier,especially in noisy domains.
文摘Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the performance of the machine learning algorithm such as Support Vector Machine(SVM)is affected when dealing with an imbalanced dataset.The classification accuracy is mostly skewed toward the majority class and poor results are exhibited in the prediction of minority-class samples.In this paper,a hybrid approach combining data pre-processing technique andSVMalgorithm based on improved Simulated Annealing(SA)was proposed.Firstly,the data preprocessing technique which primarily aims at solving the resampling strategy of handling imbalanced datasets was proposed.In this technique,the data were first synthetically generated to equalize the number of samples between classes and followed by a reduction step to remove redundancy and duplicated data.Next is the training of a balanced dataset using SVM.Since this algorithm requires an iterative process to search for the best penalty parameter during training,an improved SA algorithm was proposed for this task.In this proposed improvement,a new acceptance criterion for the solution to be accepted in the SA algorithm was introduced to enhance the accuracy of the optimization process.Experimental works based on ten publicly available imbalanced datasets have demonstrated higher accuracy in the classification tasks using the proposed approach in comparison with the conventional implementation of SVM.Registering at an average of 89.65%of accuracy for the binary class classification has demonstrated the good performance of the proposed works.
文摘The influence of processing parameters ofrelaxation-precipitation-controlling phase transformation (RPC) technique, finish rollingtemperature, reduction ratio and relaxing time on the microstructure was studied bythermo-simulation for a low carbon Nb and Ti containing micro-alloyed steel. The microstructure wasinvestigated by optical microscope, transmission electron microscope and electron back scatterdiffraction (EBSD). The statistical results of the packet size were calculated. It shows that, afterRPC process, the steel is a composite microstructure of bainite and matensite. The bestthermo-simulation process for refinement in this experiment is deformation for 30 percent at 850 degC, and then relaxing at this temperature for 60 s to 200 s. Increasing the reduction ratio from 30percent to 60 or decreasing the deformation temperature to 800 deg C would cause the best relaxationtime to become shorter, increasing the deformation temperature to 900 deg C would cause therefinement effect to be weak.
文摘In order to study the central quality of continuously cast tool steel slabs, the simple model has been developed to simulate the macrosegregation quality criteria. The model calculates different quality criteria such as average macro-segregation level criterion “ASL”, its fluctuation level “FSL” and its segregation quality number “SQN”. These criteria are calculated based on the previous measurements of carbon and sulfur concentrations distributions in final region of spray zones and centerline area of lower and upper slab sides. The effect of mechanical soft reduction Technique “MSR” on the slab centerline quality is examined and analyzed. The model results show that MSR affects the quality of centerline areas significantly by different ways based on the casting speed. The experimental and theoretical results clarify that the qualities of different slab sides are different for all collected samples. The model results show also that the accuracy of the macro-segregation quality criteria increases quantitatively with increasing the number of analyzed segregated elements. Therefore, the macrosegregation quality criteria and their distributions can be considered as the most simple and vital tool to evaluate the various slab qualities. Finally, the mechanism of centerline segregation formation with mechanical soft reduction is discussed in this study.
文摘Crohn's disease,a transmural inflammatory bowel disease,remains a difficult entity to diagnose clinically.Over the last decade,multidetector computed tomography(CT) has become the method of choice for noninvasive evaluation of the small bowel,and has proved to be of significant value in the diagnosis of Crohn's disease.Advancements in CT enterography protocol design,three dimensional(3-D) post-processing software,and CT scanner technology have allowed increasing accuracy in diagnosis,and the acquisition of studies at a much lower radiation dose.The cases in this review will illustrate that the use of 3-D technique,proper enterography protocol design,and a detailed understanding of the different manifestations of Crohn's disease are all critical in properly diagnosing the full range of possible complications in Crohn's patients.In particular,CT enterography has proven to be effective in identifying involvement of the small and large bowel(including active inflammation,stigmata of chronic inflammation,and Crohn's-related bowel neoplasia) by Crohn's disease,as well as the extra-enteric manifestations of the disease,including fistulae,sinus tracts,abscesses,and urologic/hepatobiliary/osseous complications.Moreover,the proper use of 3-D technique(including volume rendering and maximum intensity projection) as a routine component of enterography interpretation can play a vital role in improving diagnostic accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.22108306)the Taishan Scholars Program of Shandong Province(Grant No.tsqn201909065)the Shandong Provincial Natural Science Foundation(Grant Nos.ZR2021YQ15,ZR2020QB174)。
文摘The development and utilization of renewable clean energy can effectively solve the two major problems of energy and environment. As an efficient power generation device that converts hydrogen energy into electric energy, fuel cell has attracted more and more attention. For fuel cells, the oxygen reduction reaction(ORR) at the cathode is the core reaction, and the design and development of high-performance ORR catalysts remain quite challenging. Since the microenvironment of the active center of single atom catalysts(SACs) has an important influence on its catalytic performance, it has been a research focus to improve the ORR activity and stability of electrocatalysts by adjusting the structure of the active center through reasonable structural regulation methods. In this review, we reviewed the preparation and structure–activity relationship of SACs for ORR. Then, the structural precision regulation methods for improving the activity and stability of ORR electrocatalysts are discussed. And the advanced in-situ characterization techniques for revealing the changes of active sites in the electrocatalytic ORR process are summarized. Finally, the challenges and future design directions of SACs for ORR are discussed. This work will provide important reference value for the design and synthesis of SACs with high activity and stability for ORR.
基金supported by the Strategic Research Grant of City University of Hong Kong (No.7001970)
文摘This paper proposes a statistical method for damage detection based on the finite element (FE) model reduction technique that utilizes measured modal data with a limited number of sensors. A deterministic damage detection process is formulated based on the model reduction technique. The probabilistie process is integrated into the deterministic damage detection process using a perturbation technique, resulting in a statistical structural damage detection method. This is achieved by deriving the first- and second-order partial derivatives of uncertain parameters, such as elasticity of the damaged member, with respect to the measurement noise, which allows expectation and covariance matrix of the uncertain parameters to be calculated. Besides the theoretical development, this paper reports numerical verification of the proposed method using a portal frame example and Monte Carlo simulation.
基金This research is supported by The National Science FoundationThe Doctoral Training Foundation
文摘Based on Arnoldi's method, a version of generalized Arnoldi algorithm has been developed for the reduction of gyroscopic eigenvalue problems. By utilizing the skew symmetry of system matrix, a very simple recurrence scheme, named gyroscopic Arnoldi reduction algorithm has been obtained, which is even simpler than the Lanczos algorithm for symmetric eigenvalue problems. The complex number computation is completely avoided. A restart technique is used to enable the reduction algorithm to have iterative characteristics. It has been found that the restart technique is not only effective for the convergence of multiple eigenvalues but it also furnishes the reduction algorithm with a technique to check and compute missed eigenvalues. By combining it with the restart technique, the algorithm is made practical for large-scale gyroscopic eigenvalue problems. Numerical examples are given to demonstrate the effectiveness of the method proposed.
文摘Based on dynamical theories of water waves and dynamics of Mindlin thick plates, the investigation of the wave-induced responses and the vibration reduction of an elastic floating plate are presented using the Wiener-Hopf technique. Without regard to the case of elastic connector, the calculated results obtained by the present method are in good agreement with those from the literature and the experiment. It can be shown that the present method is valid. Relations between the spring stiffness to be used to connect the sea bottom and the floating plate and the parameters of wave-induced responses of floating plates are investigated using the present method. Therefore, these results can be used as theoretical bases for the design stage of super floating platform systems.