In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oil...In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.展开更多
A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was inv...A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was investigated by means of flow experiments in porous media and by using a HAAKE RS600 rheometer. The results of Nuclepore membrane filtration showed that filtration time increased sharply when the critical association concentration was reached. Shear rate had a greater impact on viscosity and shear stress with increasing HAP concentration. The HAP solution with a concentration of 100 mg/L (salinity 32,868 mg/L) exhibited negative thixotropy. However, at the same salinity the HAP solution showed thixotropy and its viscosity became greater when the polymer concentration increased to 1,500 mg/L. The flow experiments in cemented core samples indicated that the resistance factor and residual resistance factor of the HAP solution were 31.8 and 12 when polymer concentration and salinity were 1,500 mg/L, 32,868 mg/L at 85℃ respectively, which is favorable for flooding application. Such factors of partially hydrolyzed polyaerylamide 3530S were merely 3.14 and 1.71, so it could not be applied to polymer flooding in the oilfield with high temperature and high salinity.展开更多
To screen multifunctional bacteria for water treatment,a chemical oxygen demand( COD)degradation and flocculation strain S2 A15 was obtained from the offshore sewage outfall at Weihai International Beach. Based on the...To screen multifunctional bacteria for water treatment,a chemical oxygen demand( COD)degradation and flocculation strain S2 A15 was obtained from the offshore sewage outfall at Weihai International Beach. Based on the phylogenetic characteristics,a novel strain was identified as a Planococcus species. Strain S2 A15 was determined to have the ability of flocculation and COD degradation. A series of experiments showed that the strain S2 A15 could be used for the treatment of four types of wastewater,including domestic wastewater( 400 mg/L and 800 mg/L) and high salt domestic wastewater( 400 mg/L and 800 mg/L). Among them,the best effect was exerted by the strain that reduced by 76.9% in domestic wastewater with 400 mg/L COD. The flocculation ratio reached 60.19%. The optimal treatment conditions are also discussed. We confirmed that the strain S2 A15 had salt tolerance and low temperature resistance. The best growth of S2 A15 at salt concentration of 6% and further confirmed that the strain could degrade COD at a low temperature.展开更多
基金the China National High Technology Research and Development Program (No. 2013AA064301)National Natural Science Foundation of China (No. 51274210) for financial support
文摘In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.
文摘A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was investigated by means of flow experiments in porous media and by using a HAAKE RS600 rheometer. The results of Nuclepore membrane filtration showed that filtration time increased sharply when the critical association concentration was reached. Shear rate had a greater impact on viscosity and shear stress with increasing HAP concentration. The HAP solution with a concentration of 100 mg/L (salinity 32,868 mg/L) exhibited negative thixotropy. However, at the same salinity the HAP solution showed thixotropy and its viscosity became greater when the polymer concentration increased to 1,500 mg/L. The flow experiments in cemented core samples indicated that the resistance factor and residual resistance factor of the HAP solution were 31.8 and 12 when polymer concentration and salinity were 1,500 mg/L, 32,868 mg/L at 85℃ respectively, which is favorable for flooding application. Such factors of partially hydrolyzed polyaerylamide 3530S were merely 3.14 and 1.71, so it could not be applied to polymer flooding in the oilfield with high temperature and high salinity.
基金Sponsored by Foundation for Outstanding Young Scientist in Shandong Province(Grant No.BS2014NY012)China Postdoctoral Science Foundation(Grant No.2015M581456)Weihai Major Science and Technology Projects(Grant No.2015ZD08)
文摘To screen multifunctional bacteria for water treatment,a chemical oxygen demand( COD)degradation and flocculation strain S2 A15 was obtained from the offshore sewage outfall at Weihai International Beach. Based on the phylogenetic characteristics,a novel strain was identified as a Planococcus species. Strain S2 A15 was determined to have the ability of flocculation and COD degradation. A series of experiments showed that the strain S2 A15 could be used for the treatment of four types of wastewater,including domestic wastewater( 400 mg/L and 800 mg/L) and high salt domestic wastewater( 400 mg/L and 800 mg/L). Among them,the best effect was exerted by the strain that reduced by 76.9% in domestic wastewater with 400 mg/L COD. The flocculation ratio reached 60.19%. The optimal treatment conditions are also discussed. We confirmed that the strain S2 A15 had salt tolerance and low temperature resistance. The best growth of S2 A15 at salt concentration of 6% and further confirmed that the strain could degrade COD at a low temperature.