Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applic...Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91%were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280%enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.展开更多
A modified model using phase-field method in order to describe the microstructural development for the reaction templated grain growth process was developed.The current model well expressed anisotropic enlargement of ...A modified model using phase-field method in order to describe the microstructural development for the reaction templated grain growth process was developed.The current model well expressed anisotropic enlargement of the template particles.The initial parameters such as the matrix particles size,the template particles size,fraction,aspect ratio of the template particles and porosity were examined.The simulation results show that the fraction of oriented grains increases with decreasing the matrix particles size and porosity,and increasing the fraction of the initial template particles.An increase for the aspect ratio of template particles gives rise to the anisotropic microstructure development.The study suggests that the simulation results would give a guiding principle in terms of the initial preparation conditions for the textured ceramics having both a large fraction of oriented grains and anisotropic microstructure.展开更多
Transparent Al_(2)O_(3) ceramics with grains aligned to the c-axis were prepared by adding platelets with a low aspect ratio into fine equiaxed particles.The mixed powders were formed into green bodies using spontaneo...Transparent Al_(2)O_(3) ceramics with grains aligned to the c-axis were prepared by adding platelets with a low aspect ratio into fine equiaxed particles.The mixed powders were formed into green bodies using spontaneous coagulation casting and sintered by pressureless sintering and hot-isostatic pressure sintering.Zeta potentials and rheological behavior of the slurries,relative densities of green bodies,and orientation and optical properties of sintered bodies were investigated and discussed.The platelet with a high aspect ratio suppressed densification more seriously during sintering than the one with a low aspect ratio.An excellent oriented structure was obtained when 5 wt%platelets with a low aspect ratio were added,and transparent Al_(2)O_(3) ceramics with grains aligned to c-axis were successfully prepared;the in-line transmittance was 78.4%at 600 nm,which is the highest one in the currently reported literature.展开更多
0.96(K_(0.5)Na_(0.5-z)Li_(z))(Nb_(0.92)Sb_(0.08))O_(3)-0.04(Ca_(0.5)Sr_(0.5))ZrO_(3)[(KN_(0.5-z)L_(z))NS-CSZ]piezoceramics(0≤z≤0.04)were aligned in the[001]orientation using 3%(in mole)NaNbO_(3)templates with a larg...0.96(K_(0.5)Na_(0.5-z)Li_(z))(Nb_(0.92)Sb_(0.08))O_(3)-0.04(Ca_(0.5)Sr_(0.5))ZrO_(3)[(KN_(0.5-z)L_(z))NS-CSZ]piezoceramics(0≤z≤0.04)were aligned in the[001]orientation using 3%(in mole)NaNbO_(3)templates with a large Lotgering factor(>97%).Their crystal structures transformed from the orthorhombic-pseudocubic(O-P)structure to the orthorhombic-tetragonal-pseudocubic(O-T-P)structure with an increasing z.The P structure was interpreted as a rhombohedral R3m structure.The piezoelectricity of the compositions increased after[001]-texturing,and the enhancement was proportional to the O phase quantity.The composition(z=0.03)exhibited the highest piezoelectric constant(d_(33);670 pC/N)and electromechanical coupling factor(k_(p);0.56).Piezoelectric energy harvesters were produced using the untextured and textured samples(z=0.03).The textured harvester delivered a large power density of 26.6 mW/mm^(3),which was larger than that of the untextured harvester owing to the enhanced kp and d_(33)×g_(33) of the textured piezoceramic.A multilayer actuator was produced using the textured sample(z=0.03),and it exhibited a large acceleration(44.2 G)and displacement(±3,730 mm)at±25 V.Therefore,the[001]-textured(KN_(0.47)L_(0.03))NS-CSZ piezoceramic is suitable for piezoelectric energy harvesters and actuators.展开更多
BiFeGaO3-BaTiO3(BFG-BT)based ceramics with a large piezoelectric coefficient are potential high performance lead-free piezoelectric compounds.In this work,textured and random BFG-BT ceramics were realized by the solid...BiFeGaO3-BaTiO3(BFG-BT)based ceramics with a large piezoelectric coefficient are potential high performance lead-free piezoelectric compounds.In this work,textured and random BFG-BT ceramics were realized by the solid state reaction method with and without BaTiO3(BT)templates.Textured ceramics were obtained by a reactive templated grain growth(RTGG)method leading to a high-temperature electromechanical strain of S=0.27%at 40 kV/cm and to an effective piezoelectric coefficient(d33*)up to 685 pm/V at 180℃.The easy movement of oriented domains enhanced the electromechanical strain under an applied electric field in textured sample(Lotgering factor f=66.3%).Structural investigations reveal that the proportion and degree of distortion of BFG-BT rhombohedral phase(R3c)reached its maximum in textured ceramics,resulting in large ferrodistortive displacements under electric fields.In addition,the dense nanodomains with low domain wall energies,inferred from the high-resolution transmission electron microscope(HR-TEM)observations,contribute to the extra displacement of the textured sample under an applied electric field.In textured ceramics,the remnant polarization was stable(about 17μC/cm2)from room temperature to 180℃,contributing to the stable ferroelectric property at high temperatures.Through the introduction of BT templates,high-density nanodomains were formed and the Burns temperature was enhanced in textured ceramics.The electromechanical strain,polarization and dielectric behavior were correlated to the textured or random forms of the BFG-BT based ceramics.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.52072092 and 51922083)the Natural Science Foundation of Heilongjiang Province(No.YQ2019E026)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2021018).
文摘Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91%were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280%enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.
基金supported by Aviation Science Foundation of China,Basic Research Foundation of Northwestern Polytechnical University,and the Doctorate Foundation of Northwestern Polytechnical University.
文摘A modified model using phase-field method in order to describe the microstructural development for the reaction templated grain growth process was developed.The current model well expressed anisotropic enlargement of the template particles.The initial parameters such as the matrix particles size,the template particles size,fraction,aspect ratio of the template particles and porosity were examined.The simulation results show that the fraction of oriented grains increases with decreasing the matrix particles size and porosity,and increasing the fraction of the initial template particles.An increase for the aspect ratio of template particles gives rise to the anisotropic microstructure development.The study suggests that the simulation results would give a guiding principle in terms of the initial preparation conditions for the textured ceramics having both a large fraction of oriented grains and anisotropic microstructure.
基金This work was supported by the National Natural Science Foundation of China(Nos.51772309 and 52130207).The authors thank Prof.Jing WANG(Dalian University of Technology)for the synthesis of Al2O3 platelets.
文摘Transparent Al_(2)O_(3) ceramics with grains aligned to the c-axis were prepared by adding platelets with a low aspect ratio into fine equiaxed particles.The mixed powders were formed into green bodies using spontaneous coagulation casting and sintered by pressureless sintering and hot-isostatic pressure sintering.Zeta potentials and rheological behavior of the slurries,relative densities of green bodies,and orientation and optical properties of sintered bodies were investigated and discussed.The platelet with a high aspect ratio suppressed densification more seriously during sintering than the one with a low aspect ratio.An excellent oriented structure was obtained when 5 wt%platelets with a low aspect ratio were added,and transparent Al_(2)O_(3) ceramics with grains aligned to c-axis were successfully prepared;the in-line transmittance was 78.4%at 600 nm,which is the highest one in the currently reported literature.
基金supported by a National Research Foundation(NRF)of Korea grant funded by the Korean government(MSIT)(No.RS-2023-00254689).
文摘0.96(K_(0.5)Na_(0.5-z)Li_(z))(Nb_(0.92)Sb_(0.08))O_(3)-0.04(Ca_(0.5)Sr_(0.5))ZrO_(3)[(KN_(0.5-z)L_(z))NS-CSZ]piezoceramics(0≤z≤0.04)were aligned in the[001]orientation using 3%(in mole)NaNbO_(3)templates with a large Lotgering factor(>97%).Their crystal structures transformed from the orthorhombic-pseudocubic(O-P)structure to the orthorhombic-tetragonal-pseudocubic(O-T-P)structure with an increasing z.The P structure was interpreted as a rhombohedral R3m structure.The piezoelectricity of the compositions increased after[001]-texturing,and the enhancement was proportional to the O phase quantity.The composition(z=0.03)exhibited the highest piezoelectric constant(d_(33);670 pC/N)and electromechanical coupling factor(k_(p);0.56).Piezoelectric energy harvesters were produced using the untextured and textured samples(z=0.03).The textured harvester delivered a large power density of 26.6 mW/mm^(3),which was larger than that of the untextured harvester owing to the enhanced kp and d_(33)×g_(33) of the textured piezoceramic.A multilayer actuator was produced using the textured sample(z=0.03),and it exhibited a large acceleration(44.2 G)and displacement(±3,730 mm)at±25 V.Therefore,the[001]-textured(KN_(0.47)L_(0.03))NS-CSZ piezoceramic is suitable for piezoelectric energy harvesters and actuators.
基金financially supported by the National Key R&D Program of China(Nos.2016YFB0402701 and 2016YFA0201103)the National Basic Research Program of China(No.2015CB654605)+1 种基金the National Natural Science Foundation of China(Nos.51831010 and 51672293)the Instrument Developing Project of Chinese Academy of Sciences(No.ZDKYYQ20180004)。
文摘BiFeGaO3-BaTiO3(BFG-BT)based ceramics with a large piezoelectric coefficient are potential high performance lead-free piezoelectric compounds.In this work,textured and random BFG-BT ceramics were realized by the solid state reaction method with and without BaTiO3(BT)templates.Textured ceramics were obtained by a reactive templated grain growth(RTGG)method leading to a high-temperature electromechanical strain of S=0.27%at 40 kV/cm and to an effective piezoelectric coefficient(d33*)up to 685 pm/V at 180℃.The easy movement of oriented domains enhanced the electromechanical strain under an applied electric field in textured sample(Lotgering factor f=66.3%).Structural investigations reveal that the proportion and degree of distortion of BFG-BT rhombohedral phase(R3c)reached its maximum in textured ceramics,resulting in large ferrodistortive displacements under electric fields.In addition,the dense nanodomains with low domain wall energies,inferred from the high-resolution transmission electron microscope(HR-TEM)observations,contribute to the extra displacement of the textured sample under an applied electric field.In textured ceramics,the remnant polarization was stable(about 17μC/cm2)from room temperature to 180℃,contributing to the stable ferroelectric property at high temperatures.Through the introduction of BT templates,high-density nanodomains were formed and the Burns temperature was enhanced in textured ceramics.The electromechanical strain,polarization and dielectric behavior were correlated to the textured or random forms of the BFG-BT based ceramics.