The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t...The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.展开更多
A good quality Environmental Impact Statement (EIS) is key for the effectiveness of Environmental Impact Assessment (EIA) processes and consequently to the acceptability of projects subject to EIA. The international l...A good quality Environmental Impact Statement (EIS) is key for the effectiveness of Environmental Impact Assessment (EIA) processes and consequently to the acceptability of projects subject to EIA. The international literature has contributed to the understanding of the essential aspects to be verified regarding the quality of EIS, offering a wide spectrum of good practice examples related to the content of the studies. Even so, there is a need for empirical studies that allow the identification of specific aspects related to the context of application of the EIS, which could lead to the identification of opportunities to improve both the quality of the reports and also the effectiveness of EIA. Therefore, the present paper is focused on the quality review of a number of EIS submitted to the Brazilian Federal Environmental Agency (Ibama) to instruct the assessment of electric power transmission systems. Based on the application of the EIS quality review package as proposed by Lee and Colley (1992), the outcomes reveal opportunities for improving the scope of EIA, analysis of alternatives, prediction of magnitude and the assessment of impact significance. Finally, the development and/or adaptation of a similar tool for the systematic review of the quality of EIA reports is recommended.展开更多
Upper Triassic sedimentary systems of both the Arabian Plate and the Germanic Basin reveal climate- and plate tectonic-forced effects through certain time-intervals experienced by architectural elements, lithofacies t...Upper Triassic sedimentary systems of both the Arabian Plate and the Germanic Basin reveal climate- and plate tectonic-forced effects through certain time-intervals experienced by architectural elements, lithofacies types, unconformities, flash flood deposits, maximum flooding surfaces/sequence boundary (MFS/SB), mineralogy, and isotope anomalies. Further, Moon recession and changes of Earth’s rotation velocity (core/mantle boundary) are associated with multiple impacting and large igneous provinces/Mid Oceanic Ridge Basalt, LIP/MORB-rifting/degassing. While acidification (by degassing, sturz-rain) does influence tectosilicates and carbonates, montmorillonite represents a key mineral as transformation of volcanic/impact glass (Tephra) to be found as co-components in and in certain pelite units as “boundary clay-suspicions” (mixture of eolian paleoloess, pelite, paleosol, and tephra → tuffite). Obviously, unconformities and sequence boundaries of both study areas separate and dislocate interrupted ∂<sup>13</sup>C and <sup>87</sup>Sr/<sup>86</sup>Sr-data groups along the isotope curves. Both Proto-Arctic Ocean rifting/degassing comprising kimberlitic pyroclastic eruptions and Neotethys rifting/degassing as well as multiple impacting played the most important role during the Norian, followed by the incipient Central Atlantic Magmatic Provinces rifting since the Rhaetian. The following associations are encountered and dealt with in this study: Sequence boundaries-∂<sup>13</sup>C, maximum flooding surfaces-(FUCs)-∂<sup>13</sup>C, unconformities-plate motion, tephra-pelite-tuffite-montmorillonite. Norian: maximum flooding surfaces (MFSs)-“paleosol”/boundary clay?-rifting-volcanism, Moon/Earth data change. So the Norian (~221 - 206 Ma) hosts anomalous “amalgamated maximum flooding surfaces (MFSs)”, amalgamated paleosol (Jordanian Platform), multiple impacting (~219 - 214 Ma), the maximum opening of the Proto-Arctic Ocean (PAO) (~230 - 200 Ma), Neo-Tethys (NT)-subvolcanic (sills, dikes) in the NE Dead Sea area prior the Rhaetian, and a significant change of Earth/Moon relation data. The study concludes that rare and extreme events are very strongly shaping the geologic constellations in the Earth System.展开更多
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa...Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.展开更多
Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of gr...Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of great interest to quantify the conditions for incipient or full melting of metals during impact interactions,which result in a transition from still strength-affected to hydrodynamic material behavior.In this work,we investigate to which extent the respective melting thresholds are also dependent on the initial,and generally elevated,temperatures of projectiles and targets before impact.This is studied through the application of a model developed recently by the authors to characterize the transition regime between high-velocity and hypervelocity impact,for which the melting thresholds of materials were used as the defining quantities.The obtained results are expected to be of general interest for ballistic application cases where projectiles or targets are preheated.Such conditions might result,for example,from aerodynamic forces acting onto a projectile during atmospheric flight,explosive shapedcharge-jet formation or armor exposure to environmental conditions.The performed analyses also broaden the scientific understanding of the relevance of temperature in penetration events,generally known since the 1960s,but often not considered thoroughly in impact studies.展开更多
Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which d...Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for.展开更多
Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest f...Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.展开更多
HAZOP analysis is the best tool for process hazard identification and operability analysis so far which is applicable to the entire life cycle reviews of the projects and periodical reviews of the operational plants,c...HAZOP analysis is the best tool for process hazard identification and operability analysis so far which is applicable to the entire life cycle reviews of the projects and periodical reviews of the operational plants,covering three aspects of process,equipment and changes.This method has experienced more than half a century of development abroad,but in China,on the whole,it is still in the primary stage of promotion and adoption so there is not much experience and factually there are many issues in practice.This study delivers a comprehensive explortion of ten aspects of the major issues frequently in our country which impacts the effects of HAZOP,and on the basis proposes the countermeasures underpinned with domestic and foreign good practices to allow HAZOP fully to play the important role,maximize its value so that the risks of the projects and operational plants can be well addressed.展开更多
Since 2015, a “reform storm” of Environmental Impact Assessment (EIA) opened up in China. This study tries to answer the question of whether these reforms improve the effectiveness of EIA. First, we elaborate on the...Since 2015, a “reform storm” of Environmental Impact Assessment (EIA) opened up in China. This study tries to answer the question of whether these reforms improve the effectiveness of EIA. First, we elaborate on the reforms along with three well-acknowledged components, including EIA legislation, administration, and process. Then, evaluate the reformed EIA system against revised Ahmad and Wood’s criteria. The results demonstrate that the revised laws and regulations are more stringent than the old versions. The EIA process is simplified, and its coordination with the pollutant discharge permit system is promoted. The interim and post-event supervision is currently more robust and the penalties are more severe than before. However, the hierarchical position of the Environmental Protection Law is not high enough and the coordination of different government departments is still challenging. In summary, despite the problems occurring at the initial phase of reforms, the effectiveness of the EIA system has largely been improved.展开更多
The woven glass fiber reinforced composites(GFRP)subjected to high-speed impact is investigated to identify the hygrothermal aging effect on the impact resistance.Both the hygrothermal aged and unaged glass/epoxy lami...The woven glass fiber reinforced composites(GFRP)subjected to high-speed impact is investigated to identify the hygrothermal aging effect on the impact resistance.Both the hygrothermal aged and unaged glass/epoxy laminates are subjected to different impact velocities,which is confirmed as a sensitive factor for the failure modes and mechanisms.The results show the hygrothermal aging effect decreases the ballistic limit by 14.9%,but the influence on ballistic performance is limited within the impact velocity closed to the ballistic limit.The failure modes and energy dissipation mechanisms are confirmed to be slightly influenced by the hygrothermal aging effect.The hygrothermal aging effect induced localization of structural deformation and degradation of mechanical properties are the main reasons for the composite undergoing the same failure modes at smaller impact velocities.Based on the energy absorption mechanisms,analytical expressions predict the ballistic limit and energy absorption to reasonable accuracy,the underestimated total energy absorption results in a relatively poor agreement between the measured and predicted energy absorption efficiency.展开更多
Based on the recent development of renewable energy utilization technology,in addition to centralized photovol-taic power plants,distributed photovoltaic power generation systems represented by building-integrated pho...Based on the recent development of renewable energy utilization technology,in addition to centralized photovol-taic power plants,distributed photovoltaic power generation systems represented by building-integrated photo-voltaic systems are frequently employed for power supply.Therefore,in the architectural design,the double-glass photovoltaic module used in the integrated photovoltaic building system puts forward a higher load-bearing capa-city requirement and the corresponding simplified method of carrying capacity check.This article focuses on the simplified method of checking the bearing capacity of the four-sided simply supported double-glass photovoltaic module.First,the principle of equivalent stiffness is used to calculate the effective thickness.Then,the rationality of this approach is verified by comparing the bending states of sandwich panels under different shear moduli.The double-glass photovoltaic module is equivalent to a single-layer board,and its effectiveness is verified by compar-ing the impact test results of the double-glass photovoltaic module with the results of the single-layer board.But the comparison with the test results shows that,from the perspective of architectural design,the effective thick-ness results in this paper can ensure that the building structure has sufficient bearing capacity,but the four-side simply supported boundary theory cannot fully reflect the calculation of the bearing capacity of the four-side clamped double-glass photovoltaic module.展开更多
Several methods of characterization of trap levels like I-V, C-V and transient spectroscopy (DLTS) were used to determine the accurate values of the activation energies of traps present in N+P junctions obtained after...Several methods of characterization of trap levels like I-V, C-V and transient spectroscopy (DLTS) were used to determine the accurate values of the activation energies of traps present in N+P junctions obtained after retrograde profile implantation of indium and boron on silicon. Four main traps located at Ev + 0.15 eV, Ev + 0.21 eV, Ev + 0.28 eV and Ev + 0.46 eV are reported. Shallow levels are also calculated from I-V characteristics. Concurrently, indium channel doped NMOSFETs are investigated showing the kink phenomenon. In order to discuss the relationship between the kink effect and the active indium trap level situated at 0.16 eV, the transient effects are studied by varying the integration time and the temperature. The effects of substrate polarization are also carried out showing the reduction of the kink with the bulk positive polarization.展开更多
Mitochondria supply the central nervous system with energy (ATP). Mitochondrial dysfunction has been suggestedto play a pivotal role in neurodegenerative disorders. Our previous work has shown that 4 Gy carbon ionradi...Mitochondria supply the central nervous system with energy (ATP). Mitochondrial dysfunction has been suggestedto play a pivotal role in neurodegenerative disorders. Our previous work has shown that 4 Gy carbon ionradiation could increased injury in mice brain, and the irradiation increased the level of mitochondrial ROS. Here,we investigated the injury of 12C6+ radiation on mitochondrial respiration.The male Kunming mice were divided into 2 groups: control and 4 Gy 12C6+irradiation group. 24 h after theirradiation, the mice were decapitated and the brains rapidly removed. The mitochondrial isolation protocol andall procedures were performed on ice[1]. The tissue cores were homogenized and mitochondria isolated by differentialcentrifugation. The homogenate was centrifuged twice at 1 300 g.展开更多
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu...In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions.展开更多
Climate change has become a global phenomenon and is adversely affecting agricultural development across the globe.Developing countries like Pakistan where 18.9%of the GDP(gross domestic product)came from the agricult...Climate change has become a global phenomenon and is adversely affecting agricultural development across the globe.Developing countries like Pakistan where 18.9%of the GDP(gross domestic product)came from the agriculture sector and also 42%of the labor force involved in agriculture.They are directly and indirectly affected by climate change due to an increase in the frequency and intensity of climatic extreme events such as floods,droughts and extreme weather events.In this paper,we have focused on the impact of climate change on farm households and their adaptation strategies to cope up the climatic extremes.For this purpose,we have selected farm households by using multistage stratified random sampling from four districts of the Potohar region i.e.Attock,Rawalpindi,Jhelum and Chakwal.These districts were selected by dividing the Potohar region into rain-fed areas.We have employed logistic regression to assess the determinants of adaptation to climate change and its impact.We have also calculated the marginal effect of each independent variable of the logistic regression to measure the immediate rate of change in the model.In order to check the significance of our suggested model,we have used hypothesis testing.展开更多
基金financially supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Wuhan Science and Technology Bureau of China(Grant No.2023020201010081)the National Nature Science Foundation of China(Grant No.U22A20239).
文摘The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.
文摘A good quality Environmental Impact Statement (EIS) is key for the effectiveness of Environmental Impact Assessment (EIA) processes and consequently to the acceptability of projects subject to EIA. The international literature has contributed to the understanding of the essential aspects to be verified regarding the quality of EIS, offering a wide spectrum of good practice examples related to the content of the studies. Even so, there is a need for empirical studies that allow the identification of specific aspects related to the context of application of the EIS, which could lead to the identification of opportunities to improve both the quality of the reports and also the effectiveness of EIA. Therefore, the present paper is focused on the quality review of a number of EIS submitted to the Brazilian Federal Environmental Agency (Ibama) to instruct the assessment of electric power transmission systems. Based on the application of the EIS quality review package as proposed by Lee and Colley (1992), the outcomes reveal opportunities for improving the scope of EIA, analysis of alternatives, prediction of magnitude and the assessment of impact significance. Finally, the development and/or adaptation of a similar tool for the systematic review of the quality of EIA reports is recommended.
文摘Upper Triassic sedimentary systems of both the Arabian Plate and the Germanic Basin reveal climate- and plate tectonic-forced effects through certain time-intervals experienced by architectural elements, lithofacies types, unconformities, flash flood deposits, maximum flooding surfaces/sequence boundary (MFS/SB), mineralogy, and isotope anomalies. Further, Moon recession and changes of Earth’s rotation velocity (core/mantle boundary) are associated with multiple impacting and large igneous provinces/Mid Oceanic Ridge Basalt, LIP/MORB-rifting/degassing. While acidification (by degassing, sturz-rain) does influence tectosilicates and carbonates, montmorillonite represents a key mineral as transformation of volcanic/impact glass (Tephra) to be found as co-components in and in certain pelite units as “boundary clay-suspicions” (mixture of eolian paleoloess, pelite, paleosol, and tephra → tuffite). Obviously, unconformities and sequence boundaries of both study areas separate and dislocate interrupted ∂<sup>13</sup>C and <sup>87</sup>Sr/<sup>86</sup>Sr-data groups along the isotope curves. Both Proto-Arctic Ocean rifting/degassing comprising kimberlitic pyroclastic eruptions and Neotethys rifting/degassing as well as multiple impacting played the most important role during the Norian, followed by the incipient Central Atlantic Magmatic Provinces rifting since the Rhaetian. The following associations are encountered and dealt with in this study: Sequence boundaries-∂<sup>13</sup>C, maximum flooding surfaces-(FUCs)-∂<sup>13</sup>C, unconformities-plate motion, tephra-pelite-tuffite-montmorillonite. Norian: maximum flooding surfaces (MFSs)-“paleosol”/boundary clay?-rifting-volcanism, Moon/Earth data change. So the Norian (~221 - 206 Ma) hosts anomalous “amalgamated maximum flooding surfaces (MFSs)”, amalgamated paleosol (Jordanian Platform), multiple impacting (~219 - 214 Ma), the maximum opening of the Proto-Arctic Ocean (PAO) (~230 - 200 Ma), Neo-Tethys (NT)-subvolcanic (sills, dikes) in the NE Dead Sea area prior the Rhaetian, and a significant change of Earth/Moon relation data. The study concludes that rare and extreme events are very strongly shaping the geologic constellations in the Earth System.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1127)the Fundamental Research Funds for the Central Universities(No.2682023CX075).
文摘Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.
基金funding by Bundesministerium der Verteidigung(BMVg),Germany。
文摘Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of great interest to quantify the conditions for incipient or full melting of metals during impact interactions,which result in a transition from still strength-affected to hydrodynamic material behavior.In this work,we investigate to which extent the respective melting thresholds are also dependent on the initial,and generally elevated,temperatures of projectiles and targets before impact.This is studied through the application of a model developed recently by the authors to characterize the transition regime between high-velocity and hypervelocity impact,for which the melting thresholds of materials were used as the defining quantities.The obtained results are expected to be of general interest for ballistic application cases where projectiles or targets are preheated.Such conditions might result,for example,from aerodynamic forces acting onto a projectile during atmospheric flight,explosive shapedcharge-jet formation or armor exposure to environmental conditions.The performed analyses also broaden the scientific understanding of the relevance of temperature in penetration events,generally known since the 1960s,but often not considered thoroughly in impact studies.
基金supported by the National Natural Science Foundation of China[Grant Nos.51938011 and 51908405]Australian Research Council。
文摘Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for.
文摘Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.
文摘HAZOP analysis is the best tool for process hazard identification and operability analysis so far which is applicable to the entire life cycle reviews of the projects and periodical reviews of the operational plants,covering three aspects of process,equipment and changes.This method has experienced more than half a century of development abroad,but in China,on the whole,it is still in the primary stage of promotion and adoption so there is not much experience and factually there are many issues in practice.This study delivers a comprehensive explortion of ten aspects of the major issues frequently in our country which impacts the effects of HAZOP,and on the basis proposes the countermeasures underpinned with domestic and foreign good practices to allow HAZOP fully to play the important role,maximize its value so that the risks of the projects and operational plants can be well addressed.
文摘Since 2015, a “reform storm” of Environmental Impact Assessment (EIA) opened up in China. This study tries to answer the question of whether these reforms improve the effectiveness of EIA. First, we elaborate on the reforms along with three well-acknowledged components, including EIA legislation, administration, and process. Then, evaluate the reformed EIA system against revised Ahmad and Wood’s criteria. The results demonstrate that the revised laws and regulations are more stringent than the old versions. The EIA process is simplified, and its coordination with the pollutant discharge permit system is promoted. The interim and post-event supervision is currently more robust and the penalties are more severe than before. However, the hierarchical position of the Environmental Protection Law is not high enough and the coordination of different government departments is still challenging. In summary, despite the problems occurring at the initial phase of reforms, the effectiveness of the EIA system has largely been improved.
基金supported by the Ph.D.Research Startup Funding of Eastern Liaoning University(Grant no.2019BS009).
文摘The woven glass fiber reinforced composites(GFRP)subjected to high-speed impact is investigated to identify the hygrothermal aging effect on the impact resistance.Both the hygrothermal aged and unaged glass/epoxy laminates are subjected to different impact velocities,which is confirmed as a sensitive factor for the failure modes and mechanisms.The results show the hygrothermal aging effect decreases the ballistic limit by 14.9%,but the influence on ballistic performance is limited within the impact velocity closed to the ballistic limit.The failure modes and energy dissipation mechanisms are confirmed to be slightly influenced by the hygrothermal aging effect.The hygrothermal aging effect induced localization of structural deformation and degradation of mechanical properties are the main reasons for the composite undergoing the same failure modes at smaller impact velocities.Based on the energy absorption mechanisms,analytical expressions predict the ballistic limit and energy absorption to reasonable accuracy,the underestimated total energy absorption results in a relatively poor agreement between the measured and predicted energy absorption efficiency.
基金This research was funded by the National Key Research and Development Program of China:Newton Fund-China-UK Research and Innovations Bridges(No.2016YFE0124500).
文摘Based on the recent development of renewable energy utilization technology,in addition to centralized photovol-taic power plants,distributed photovoltaic power generation systems represented by building-integrated photo-voltaic systems are frequently employed for power supply.Therefore,in the architectural design,the double-glass photovoltaic module used in the integrated photovoltaic building system puts forward a higher load-bearing capa-city requirement and the corresponding simplified method of carrying capacity check.This article focuses on the simplified method of checking the bearing capacity of the four-sided simply supported double-glass photovoltaic module.First,the principle of equivalent stiffness is used to calculate the effective thickness.Then,the rationality of this approach is verified by comparing the bending states of sandwich panels under different shear moduli.The double-glass photovoltaic module is equivalent to a single-layer board,and its effectiveness is verified by compar-ing the impact test results of the double-glass photovoltaic module with the results of the single-layer board.But the comparison with the test results shows that,from the perspective of architectural design,the effective thick-ness results in this paper can ensure that the building structure has sufficient bearing capacity,but the four-side simply supported boundary theory cannot fully reflect the calculation of the bearing capacity of the four-side clamped double-glass photovoltaic module.
文摘Several methods of characterization of trap levels like I-V, C-V and transient spectroscopy (DLTS) were used to determine the accurate values of the activation energies of traps present in N+P junctions obtained after retrograde profile implantation of indium and boron on silicon. Four main traps located at Ev + 0.15 eV, Ev + 0.21 eV, Ev + 0.28 eV and Ev + 0.46 eV are reported. Shallow levels are also calculated from I-V characteristics. Concurrently, indium channel doped NMOSFETs are investigated showing the kink phenomenon. In order to discuss the relationship between the kink effect and the active indium trap level situated at 0.16 eV, the transient effects are studied by varying the integration time and the temperature. The effects of substrate polarization are also carried out showing the reduction of the kink with the bulk positive polarization.
基金Key Program of National Natural Science Foundation of China (U1432248), National Natural Science Foundationof China (11175222, 11205219)
文摘Mitochondria supply the central nervous system with energy (ATP). Mitochondrial dysfunction has been suggestedto play a pivotal role in neurodegenerative disorders. Our previous work has shown that 4 Gy carbon ionradiation could increased injury in mice brain, and the irradiation increased the level of mitochondrial ROS. Here,we investigated the injury of 12C6+ radiation on mitochondrial respiration.The male Kunming mice were divided into 2 groups: control and 4 Gy 12C6+irradiation group. 24 h after theirradiation, the mice were decapitated and the brains rapidly removed. The mitochondrial isolation protocol andall procedures were performed on ice[1]. The tissue cores were homogenized and mitochondria isolated by differentialcentrifugation. The homogenate was centrifuged twice at 1 300 g.
文摘In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions.
文摘Climate change has become a global phenomenon and is adversely affecting agricultural development across the globe.Developing countries like Pakistan where 18.9%of the GDP(gross domestic product)came from the agriculture sector and also 42%of the labor force involved in agriculture.They are directly and indirectly affected by climate change due to an increase in the frequency and intensity of climatic extreme events such as floods,droughts and extreme weather events.In this paper,we have focused on the impact of climate change on farm households and their adaptation strategies to cope up the climatic extremes.For this purpose,we have selected farm households by using multistage stratified random sampling from four districts of the Potohar region i.e.Attock,Rawalpindi,Jhelum and Chakwal.These districts were selected by dividing the Potohar region into rain-fed areas.We have employed logistic regression to assess the determinants of adaptation to climate change and its impact.We have also calculated the marginal effect of each independent variable of the logistic regression to measure the immediate rate of change in the model.In order to check the significance of our suggested model,we have used hypothesis testing.