Paved road dust is one of the most important aerosols in China. The authors estimated road dust emissions using an empirical model (AP-42 model) developed by the U.S. Environmental Protection Agency, and simulated r...Paved road dust is one of the most important aerosols in China. The authors estimated road dust emissions using an empirical model (AP-42 model) developed by the U.S. Environmental Protection Agency, and simulated road dust concentrations over China for the years 2006-2011 using the GEOS-Chem model.The annual road dust emissions amount averaged over 2006-2011 is estimated to be 2331.4 kt, with much higher emissions in eastern China than in western China. Because of heavy traffic and a dense road network, emissions are high over Beijing-Tianjin-Tanggu (BTT), Henan Province, and Shandong Province. Meanwhile, emissions are calculated to be 459.1, 112.0, and 102.7 kt, respectively, over BTT, the Pearl River Delta (PRD) region, and the Yangtze River Delta (YRD). Due to the monthly variation of precipitation, road dust emissions over China are simulated to be highest in December and lowest in June. The highest annual mean road dust concentration is simulated to be 14.5 tJg m-3 in Beijing. Over 2006-2011, because of the increases in road length and number of vehicles, annual road dust emissions for China as a whole, Bl-r, the PRD, and the YRD, are simulated to increase by 260%, 239%, 266%, and 59%, respectively, leading to 233%, 243%, 273%, and 100% increases in road dust concentrations in these regions, respectively. Our results have important implications for air pollution control in China.展开更多
The impact of temporal variation of rainfall on the relationship between rainfall and catchment response is investigated in a catchment with high temporally variable rainfalls and a high percentage of permeable soils ...The impact of temporal variation of rainfall on the relationship between rainfall and catchment response is investigated in a catchment with high temporally variable rainfalls and a high percentage of permeable soils in the southwest of Iran.Twenty-nine storm events are classified into two classes, High Temporal heterogeneous(HT) and Low Temporal heterogeneous(LT) events using the variogram technique and the storm events of each class are analyzed to detect the relationship between Curve Number(CN) and rainfall depth. It is found that there is not a similar correlation between CN values and rainfall depths for both temporally variable classes, and hence, two different responses can be observed in the catchment according to rainfall temporal heterogeneities. For HT events, a complacent behavior is detected in which the CNs decline as rainfall depth increases while a different response, violent behavior, is observed for LT events in which the CNs rise and asymptotically approach a constant value with increasing storm size. This considerable difference between CN-P relationships derived from the two temporally variable classes of rainfall is attributed to the provocation of different runoff generation mechanisms, infiltration-excess and saturation-excess caused by rainfall temporal heterogeneities. Moreover, the results support the validity of variogram technique to classify storm events into two LT and HT classes.展开更多
基金supported by the National Basic Research Program of China[973 program,grant number 2014CB441202]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA05100503]the National Natural Science Foundation of China[grant number 41021004],[grant number 41475137],[grant number 91544219]
文摘Paved road dust is one of the most important aerosols in China. The authors estimated road dust emissions using an empirical model (AP-42 model) developed by the U.S. Environmental Protection Agency, and simulated road dust concentrations over China for the years 2006-2011 using the GEOS-Chem model.The annual road dust emissions amount averaged over 2006-2011 is estimated to be 2331.4 kt, with much higher emissions in eastern China than in western China. Because of heavy traffic and a dense road network, emissions are high over Beijing-Tianjin-Tanggu (BTT), Henan Province, and Shandong Province. Meanwhile, emissions are calculated to be 459.1, 112.0, and 102.7 kt, respectively, over BTT, the Pearl River Delta (PRD) region, and the Yangtze River Delta (YRD). Due to the monthly variation of precipitation, road dust emissions over China are simulated to be highest in December and lowest in June. The highest annual mean road dust concentration is simulated to be 14.5 tJg m-3 in Beijing. Over 2006-2011, because of the increases in road length and number of vehicles, annual road dust emissions for China as a whole, Bl-r, the PRD, and the YRD, are simulated to increase by 260%, 239%, 266%, and 59%, respectively, leading to 233%, 243%, 273%, and 100% increases in road dust concentrations in these regions, respectively. Our results have important implications for air pollution control in China.
文摘The impact of temporal variation of rainfall on the relationship between rainfall and catchment response is investigated in a catchment with high temporally variable rainfalls and a high percentage of permeable soils in the southwest of Iran.Twenty-nine storm events are classified into two classes, High Temporal heterogeneous(HT) and Low Temporal heterogeneous(LT) events using the variogram technique and the storm events of each class are analyzed to detect the relationship between Curve Number(CN) and rainfall depth. It is found that there is not a similar correlation between CN values and rainfall depths for both temporally variable classes, and hence, two different responses can be observed in the catchment according to rainfall temporal heterogeneities. For HT events, a complacent behavior is detected in which the CNs decline as rainfall depth increases while a different response, violent behavior, is observed for LT events in which the CNs rise and asymptotically approach a constant value with increasing storm size. This considerable difference between CN-P relationships derived from the two temporally variable classes of rainfall is attributed to the provocation of different runoff generation mechanisms, infiltration-excess and saturation-excess caused by rainfall temporal heterogeneities. Moreover, the results support the validity of variogram technique to classify storm events into two LT and HT classes.