In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ...In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.展开更多
A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition...A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition effect and mechanism were analyzed by scanning electron microscopy(SEM),X-ray diffraction(XRD), thermal performance analysis, in-situ diffuse reflectance infrared spectroscopy and temperature-programmed experiment. The results have shown that the inhibitor containing lanthanum can play a good inhibitory role in every stage of coal oxidation. During the slow oxidation of coal samples, the inhibitor containing lanthanum ions can slow down the oxidation process of coal and increase the initial temperature of coal spontaneous combustion. At the same time, because the hydroxyl groups in LDHs are connected with-COO-groups on the coal surface through hydrogen bonds, the stability of coal is improved. With the increase of temperature, LDHs can remove interlayer water molecules and reduce the surface temperature of coal. CO release rate of coal samples decreases significantly after adding inhibitor containing lanthanum element, and the maximum inhibition rate of the inhibitor is 58.1%.展开更多
The physical and chemical properties of the air-dried residual coal after soaking in the goaf will change,resulting in an increase in its spontaneous combustion tendency.This study aimed to look into the features and ...The physical and chemical properties of the air-dried residual coal after soaking in the goaf will change,resulting in an increase in its spontaneous combustion tendency.This study aimed to look into the features and mechanism of soaked-dried coal's spontaneous combustion.Five samples of coal were dried to various degrees,and the weight loss features during thermal processing were examined.Based on this,the pore structure and chemical structure characteristics of the coal samples with the highest tendency to spontaneous combustion were quantitatively examined,and the mechanism by which soaking-drying afected the spontaneous combustion heating process of the remaining coal in goaf was investigated in turn.The results show that T1 decreases with the increase of drying time,T2–T6 shows a fuctuating change,and the ignition activation energy of 36-S-Coal is smaller than that of other coal samples.The pore type of 36-S-Coal changes from a oneend closed impermeable pore to an open pore,and the pore group area is large.During the 36 h drying process,the internal channels of the coal were dredged,and a large number of gravels and minerals were precipitated from the pores with the air fow.A large number of gravels were around the pores to form a surface structure that was easy to adsorb various gases.Furthermore,infrared spectroscopy was used to analyze the two coal samples.It was found that soaking and drying did not change the functional group types of coal samples,but the fatty chain degree of 36-S-Coal was reduced to 1.56.It shows that the aliphatic chain structure of coal is changed after 36 h of drying after 30 days of soaking,which leads to the continuous shedding of aliphatic chain branches of residual coal,and the skeleton of coal is looser,which makes the low-temperature oxidation reaction of 36-S-Coal easier.Based on the above results,the coal-oxygen composite mechanism of water-immerseddried coal is obtained,and it is considered that the key to the spontaneous combustion oxidation process of coal is to provide oxygen atoms and accelerate the formation of peroxides.展开更多
Spontaneous combustion of coal seam has been and continues to be a big problem in coal mines. It could pose great threat to the safety of the whole mine and all miners, especially when it occurs in or nearby coal mine...Spontaneous combustion of coal seam has been and continues to be a big problem in coal mines. It could pose great threat to the safety of the whole mine and all miners, especially when it occurs in or nearby coal mines. Besides, environment of area surrounded mines during combustion can be threatened where large amount of toxic gases including CO_2, CO, SO_2 and H_2S can be leased by fire in mine. Hence, it is important and significant for scholars to study the controlling and preventing of the coal seam fire. In this paper, the complicated reasons for the occurrence and development of spontaneous combustion in coal seam are analysed and different models under various air leakage situations are built as well. Based on the model and approximately calculation, the difficulty of fire extinguishment in coal seam is pointed out as the difficulty and poor effect to remove the large amount of heat released. Detailed measurements about backfilling and case analyses are also provided on the basis of the recent ten years' practice of controlling spontaneous combustion in coal seams in China. A technical fire prevention and control method has been concluded as five steps including detection, prevention, sealing, injection and pressure adjustment. However, various backfill materials require different application and environmental factors, so in this paper, analyses and discussion about the effect and engineering application of prevention of spontaneous combustion are provided according to different backfilling technologies and methods. Once the aforementioned fire prevention can be widely applied and regulated in mines, green mining will be achievable concerning mine fire prevention and control.展开更多
Abstract Pyrite has a significant effect on the spontaneous combustion of coal. The presence of pyrite can change the propensity of coal towards spontaneous combustion. The influences of various pyrite contents on the...Abstract Pyrite has a significant effect on the spontaneous combustion of coal. The presence of pyrite can change the propensity of coal towards spontaneous combustion. The influences of various pyrite contents on the parameters of spontaneous combustion, such as index gases, temperature and released heat etc., were investigated in this study, Coal samples with different pyrite contents (0 %, 3 %, 5 %, 7 % and 9 %) were made by mixing coal and pyrite. The oxidation experiments under temperature-programmed condition were carried out to test the release rate of gaseous oxidation products at different temperatures. Differential scanning calorimeter (DSC) was employed to measure the intensity of heat release during coal oxidation for various pyrite contents. The results indicate that pyrite can nonlinearly accelerate the process of spontaneous combustion. The coal sample with a pyrite content of 5 % has the largest CO release rate and oxygen adsorption as well. However, the coal sample with a pyrite content of ? % has the largest rate of heat flow according to the results from the DSC tests. Pyrite contents of 5 %-7 % in coal has the most significant effects on spontaneous combustion within the range of this study. The conclusions are conducive to the evaluation and control for the spontaneous combustion of coal.展开更多
To explore a new evaluation method for spontaneous combustion tendency of different areas in sulfide ore heap, ore samples from a pyrite mine in China were taken as experimental materials, and the temperature variatio...To explore a new evaluation method for spontaneous combustion tendency of different areas in sulfide ore heap, ore samples from a pyrite mine in China were taken as experimental materials, and the temperature variations of the measuring points of simulated ore heap were measured. Combined with wavelet transform and nonlinear parameters extraction, a new method for spontaneous combustion tendency of different areas in sulfide ore heap based on nonlinear parameters was proposed and its reliability was verified by field test. The results indicate that temperature field evolution of the simulated ore heap presents significant spatial difference during self-heating process. Area with the maximum increasing extent of temperature in sulfide ore heap changes notably with the proceeding of self-heating reaction. Self-heating of sulfide ore heap is a chaotic evolution process, which means that it is feasible to evaluate spontaneous combustion tendency of different areas by nonlinear analysis method. There is a relatively strong correlation between the maximum Lyapunov exponent and spontaneous combustion tendency with the correlation coefficient of 0.9792. Furthermore, the sort of the maximum Lyapunov exponent is consistent with that of spontaneous combustion tendency. Therefore, spontaneous combustion tendency of different areas in sulfide ore heap can be evaluated by means of the maximum Lyapunov exponent method.展开更多
Coal and coal-shale both tend to undergo spontaneous combustion under favourable atmospheric conditions. The Wits-Ehac index has been developed in South Africa since the late 1980's to test the spontaneous combust...Coal and coal-shale both tend to undergo spontaneous combustion under favourable atmospheric conditions. The Wits-Ehac index has been developed in South Africa since the late 1980's to test the spontaneous combustion liability of coal. However, in some cases, the Wits-Ehac index fails to produce tangible results when testing coal-shales. To overcome this problem, a new apparatus has been developed to test carbonaceous materials such as coal and coal-shale under chemical reactions with oxygen and an index has been obtained. This index is called the Wits-CT index. The equipment emulates the influence of oxygen adsorption on carbonaceous material for a period of 24 h without a heating system.The Wits-CT index uses the total carbon content of the sample and the temperature variations obtained from the samples during reaction with oxygen to predict the spontaneous combustion liability. Eighteen samples have been analyzed using both indices and the results are in-line. It was found that coals and coal-shales with higher values of the Wits-CT index are more liable to spontaneous combustion.Further research on different coal-shales is underway in order to establish an extensive database for coal and coal-shales, together with known incidences of self-heating.展开更多
The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory d...The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory determination were initialized for the value which was defined as "K". The ratio of each index gas and value of "K", and the ratio of combination index gases and value of "K", were analyzed simultaneously. The research results show that for this coal mine, if there is carbon monoxide in the gas sample, the phenomenon of oxidation and temperature rising for coal exists in this mine; if there is C_2H_4 in the gas sample, the temperature of coal perhaps exceeds 130 °C. If the coal temperature is between 35 °C and 130 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(CO)/K mainly; if the temperature of coal is between 130 °C and 300 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(C_2H_6)/Φ(C_2H_2) and Φ(C_2H_6)/K. The research results provide experimental basis for the prediction of coal spontaneous combustion in Anyuan coal mine, and have better guidance on safe production of this coal mine.展开更多
By solving steady model of air flow diffusion and chemical reaction in loose coal, distribution of oxygen concentration and flow velocity magnitude were obtained. Compared the simulating results with critic value as w...By solving steady model of air flow diffusion and chemical reaction in loose coal, distribution of oxygen concentration and flow velocity magnitude were obtained. Compared the simulating results with critic value as well as duration of spontaneous combustion from large-scale spontaneous combustion experiment, 'three zones' of spontaneous combustion were partitioned and mining conditions to avoid spontaneous combustion were obtained. The above method was employed to partition 'three zones' in gob of fully mechanized top-coal caving long wall face and got fairly good result. Calculation of the above method is much smaller than simulating the whole process of coal spontaneous combustion, but the prediction precision can satisfy the demand of predicting and extinguishing spontaneous combustion in mining.展开更多
Coal samples in the air for three months were characterized by Thermogravimetric Analysis (TGA). The effect of a PVA oxygen-insulating barrier on the spontaneous combustion of coal was examined. The moisture loss acti...Coal samples in the air for three months were characterized by Thermogravimetric Analysis (TGA). The effect of a PVA oxygen-insulating barrier on the spontaneous combustion of coal was examined. The moisture loss activation energy, oxidation activation energy and combustion activation energy were calculated by an integral method using the Coats-Redfen formula. The results show that the tendency for spontaneous combustion of three coal samples (judged by the activation energy) falls in the order: CYW>YJL>SW. The oxidation activation energy and combustion activation energy of coal protected by the PVA oxygen-insulating barrier increased. A significant increase in the combustion activation energy was noted, especially for the CYW coal where the in-crease was 28.53 kJ/mol. Hence, oxidation of the protected coal samples was more difficult. The PVA oxygen-insulating barrier helps to prevent spontaneous combustion of the coal.展开更多
Spontaneous combustion is one of the greatest disasters in coal mines. Early recognition is important because it may be a potential inducement for other coalmine accidents. However, early recognition is difficult beca...Spontaneous combustion is one of the greatest disasters in coal mines. Early recognition is important because it may be a potential inducement for other coalmine accidents. However, early recognition is difficult because of the complexity of different coal mines. Fuzzy clustering has been proposed to incorporate the uncertainty of spontaneous combustion in coal mines and it can give a clear degree of classification of combustion. Because FCM clustering tends to become trapped in local minima, a new approach of fuzzy c-means clustering based on a genetic algorithm is there- fore proposed. Genetic algorithm is capable of locating optimal or near optimal solutions to difficult problems. It can be applied in many fields without first obtaining detailed knowledge about correlation. It is helpful in improving the effec- tiveness of fuzzy clustering in detecting spontaneous combustion. The effectiveness of the method is demonstrated by means of an experiment.展开更多
The influence of gas drainage on float coal spontaneous combustion in the work face with "U" style ventilation was studied. Numerical simulation was used to compare the mutative law of steady flow and density field ...The influence of gas drainage on float coal spontaneous combustion in the work face with "U" style ventilation was studied. Numerical simulation was used to compare the mutative law of steady flow and density field in the gob area under different drainage conditions by solving the equation set, including mass, momentum, and component transition. Consequently, the sequence of drainage effect and safety was obtained. The result manifests that the more effective the drainage pattern is, the easier float coal spontaneous combustion is caused due to air being guided into the depth of the gob area when the drainage position is arranged in the gas accumulation area. If the widened scope of oxidation zone exceeds the upper limit of the work face advancing speed, nitrogen injection should be applied to decrease the probability of spontaneous combustion. Then, the pipe laying drainage in the upper angle is most economical and safe compared with other drainage patterns when only the situation of gas accumulation is controlled in the upper angle. Finally, drainage pressure must not be too great. Otherwise the drainage density will decrease even if hazard is caused by back flow possibly happening in the return outlet when the drainage position is arranged near the work face.展开更多
Discussed latest research results of basic theory research of coal spontaneous combustion in detail,with quantum chemical theory and method and experiment syste- matically studied chemical structure of coal molecule,a...Discussed latest research results of basic theory research of coal spontaneous combustion in detail,with quantum chemical theory and method and experiment syste- matically studied chemical structure of coal molecule,adsorption mechanism of coal sur- face to oxygen molecule and chemical reaction mechanism and process of spontaneous combustion of organic macromolecule and low molecular weight compound in coal from microcosmic view,and established complete theoretical system of the mechanism of coal spontaneous combustion.展开更多
Three representative sulfide ore samples were collected from typical metal mines,and their corresponding pre-oxidized products were obtained under nature environment.The thermal behaviors of each sample at heating rat...Three representative sulfide ore samples were collected from typical metal mines,and their corresponding pre-oxidized products were obtained under nature environment.The thermal behaviors of each sample at heating rates of 5,10,15 and 20 °C/min in air flow from ambient temperature to 800 °C were studied by simultaneous thermal analysis and the TG/DSC curves before and after the pre-oxidation were compared.By the peak temperature of DTG curves,the whole reaction process for each sample was divided into different stages,and the apparent activation energies were calculated by the Ozawa-Flynn-Wall method.The results show that the reaction process of each sample after pre-oxidation is more complex,with quicker reaction rates,fewer heat production quantities,and higher or lower ignition-points.The apparent activation energies decrease from 364.017-474.228 kJ/mol to 244.523- 333.161 kJ/mol.Therefore,sulfide ores are more susceptible to spontaneous combustion after the pre-oxidation.展开更多
The characterization of the physical and chemical properties of coal on a standard provides an understanding of its characteristics towards spontaneous combustion.The trend of linear relationships between coal recordi...The characterization of the physical and chemical properties of coal on a standard provides an understanding of its characteristics towards spontaneous combustion.The trend of linear relationships between coal recording standards(%air-dried(ad),%dry(db)and%dry ash free(daf)basis)of 30 selected coal samples from the Witbank coalfields and spontaneous combustion liability indices were evaluated.The spontaneous combustion liability indices of these samples were evaluated by crossing point temperature(XPT),Stage II Slope,FCC(Feng,Chakravorty,Cochrane)and the Wits-Ehac tests,while the coal properties were determined from the proximate and ultimate analyses.The results obtained from these coal properties were related to different liability indices to develop trends of linear relationships using regression analysis.The ad basis indicated higher correlation coefficients than the db and daf basis for the XPT and FCC index,while the daf showed higher correlation coefficients than the ad and db basis for the Wits-Ehac index.It was found that the trend of linear relationships of these coal properties differs from one liability index to the next.The XPTs showed a better trend followed by the Stage II Slope on the coal properties among the spontaneous combustion liability indices evaluated.展开更多
A simplified model for SO_(2) generation during spontaneous combustion of coal gangue was put forward and validated using the measured data.Using the proposed model,the effects of initial temperature inside the gangue...A simplified model for SO_(2) generation during spontaneous combustion of coal gangue was put forward and validated using the measured data.Using the proposed model,the effects of initial temperature inside the gangue and fresh air supply on SO_(2) generation were discussed.The results showed that,higher initial temperature inside the gangue could accelerate the oxidation rate of FeS_(2) and increase the maximum concentration of SO_(2).If initial temperature inside the gangue increased by about 37%,the total SO_(2) generation increased by 166%.Fresh air supply had less significant effect on the oxidation rate of FeS_(2).However,the higher the fresh air supply was,the more FeS_(2) could be oxidized,which ultimately produced more SO_(2).Although the computed results and the measured data concerning the inner locations inside the gangue had a certain degree of error,the proposed model can provide a relatively precise total release of SO_(2) within acceptable accuracy.Besides,this method provides a useful prototype to predict the generation of hazardous materials,such as CO,NO_(x),and chlorine during the spontaneous combustion of coal gangue.展开更多
Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself,burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combust...Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself,burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combustion have been reported as a result of self-heating of reactive coal-shales. The intrinsic properties and spontaneous combustion tests of 28 selected coal and coal-shale samples were conducted and a relationship between the two has been established. Intrinsic properties were obtained by using the proximate and ultimate analysis, and spontaneous combustion liability tests results were obtained by using the Wits-Ehac and Wits-CT indices. The experimental results show that intrinsic properties of these materials complement to the spontaneous combustion liability tests results. Comparative analyses of intrinsic properties and spontaneous combustion characteristics indicate similarities between the mechanism of coal oxidation and that of the oxidative processes undergone by coal-shales. For the tested samples, coal samples have a higher intrinsic spontaneous combustion reactivity rating than the coal-shales.Furthermore, an increase in carbon, moisture, hydrogen, volatile matter, nitrogen and a decrease in ash content indicate an increased proneness to self-heating. The concentration of pyrite found in the coal-shales accelerates self-heating. The event of spontaneous combustion can occur if coal-shales absorb sufficient oxygen when subjected to atmospheric conditions.展开更多
CO has been used widely in the production process of colliery as an index gas to predict spontaneous combustion of coal. But in some collieries there are CO gas in the upper corner of the face all the times, sometime ...CO has been used widely in the production process of colliery as an index gas to predict spontaneous combustion of coal. But in some collieries there are CO gas in the upper corner of the face all the times, sometime CO gas even exceeds the regulated critical index. This phenomenon is much more obvious in the fully-mechanized longwall face and fully-mechanized longwall and top-coal caving face. Although many measures of fire-proof and fire-extinguishing have been adopted, the flowing amount of CO gas can be only decreasd, but can not be eliminated completely. Using the different kinds of coal, the experiment of coal oxidation was made at the low temperature. The experiment indicates that some kinds of coal can produce CO under the condition of normal temperature oxidation, sometime the CO consistency is very high, and the intension of CO can be decreased with oxidation time prolonging. Selecting rational critical value of CO is the kev to predicting spontaneous combustion of coal correctly and reliably. The problem of selecting retional critical value of CO was studied. Finally, the amount of CO gas released by different kinds of coal was obtained under normal temperature condition.展开更多
The spontaneous combustion event in coal stockpiles is inevitable when appropriate environmental conditions are available. The objective of a computerized measurement system is to measure temperature changes existing ...The spontaneous combustion event in coal stockpiles is inevitable when appropriate environmental conditions are available. The objective of a computerized measurement system is to measure temperature changes existing in a coal stockpile. In order to achieve this intention, the electrical signal conversion of temperatures sensed by 20 temperature sensors placed in certain points inside the coal stockpile, the transfer of these electrical signals into computer media by using analogue-digital conversion unit after applying necessary filterization and upgrading processes and the record of these information into a database in particular time intervals are provided. Afterwards, the diagrams of these time-temperature data are plotted. With the help of these graphs, the competent company will be able to examine the behavior of coal stockpiles in terms of spontaneous combustion and take necessary precautions against self-combustion beforehand.展开更多
It’s necessary to forecast the shortest spontaneous combustion period for preventing and controlling the coal spontaneous combustion.During the experimental process,a calculating model of the SSCP is established on t...It’s necessary to forecast the shortest spontaneous combustion period for preventing and controlling the coal spontaneous combustion.During the experimental process,a calculating model of the SSCP is established on the basis of the oxidative heat release intensity and thermal capacity at different temperatures.According to the basic parameters of spontaneous combustion,heat of water evaporation and gas desorption,the SSCPs of different coals are further predicted.Finally,this study analyzed the relationships of the SSCP and the judging indexes of the self-ignite tendency.The result shows that the SSCP non-linearly increases with the decrease of dynamic oxygen adsorption and increase of activation energy.Compared with the practical fire situation of mine,this reliable method can meet the actual requirement of mine production.展开更多
基金support from the National Key R&D Program of China(Grant No.2022YFC3004704)the National Natural Science Foundation of China(Grant No.52374241)the National Natural Science Foundation of China Youth Foundation(Grant No.52104230).
文摘In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.
基金Funded by National Natural Science Foundation of China (No.52074218)。
文摘A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition effect and mechanism were analyzed by scanning electron microscopy(SEM),X-ray diffraction(XRD), thermal performance analysis, in-situ diffuse reflectance infrared spectroscopy and temperature-programmed experiment. The results have shown that the inhibitor containing lanthanum can play a good inhibitory role in every stage of coal oxidation. During the slow oxidation of coal samples, the inhibitor containing lanthanum ions can slow down the oxidation process of coal and increase the initial temperature of coal spontaneous combustion. At the same time, because the hydroxyl groups in LDHs are connected with-COO-groups on the coal surface through hydrogen bonds, the stability of coal is improved. With the increase of temperature, LDHs can remove interlayer water molecules and reduce the surface temperature of coal. CO release rate of coal samples decreases significantly after adding inhibitor containing lanthanum element, and the maximum inhibition rate of the inhibitor is 58.1%.
基金supported by the fnancial support of the General Projects of National Natural Science Foundation of China(52074156).
文摘The physical and chemical properties of the air-dried residual coal after soaking in the goaf will change,resulting in an increase in its spontaneous combustion tendency.This study aimed to look into the features and mechanism of soaked-dried coal's spontaneous combustion.Five samples of coal were dried to various degrees,and the weight loss features during thermal processing were examined.Based on this,the pore structure and chemical structure characteristics of the coal samples with the highest tendency to spontaneous combustion were quantitatively examined,and the mechanism by which soaking-drying afected the spontaneous combustion heating process of the remaining coal in goaf was investigated in turn.The results show that T1 decreases with the increase of drying time,T2–T6 shows a fuctuating change,and the ignition activation energy of 36-S-Coal is smaller than that of other coal samples.The pore type of 36-S-Coal changes from a oneend closed impermeable pore to an open pore,and the pore group area is large.During the 36 h drying process,the internal channels of the coal were dredged,and a large number of gravels and minerals were precipitated from the pores with the air fow.A large number of gravels were around the pores to form a surface structure that was easy to adsorb various gases.Furthermore,infrared spectroscopy was used to analyze the two coal samples.It was found that soaking and drying did not change the functional group types of coal samples,but the fatty chain degree of 36-S-Coal was reduced to 1.56.It shows that the aliphatic chain structure of coal is changed after 36 h of drying after 30 days of soaking,which leads to the continuous shedding of aliphatic chain branches of residual coal,and the skeleton of coal is looser,which makes the low-temperature oxidation reaction of 36-S-Coal easier.Based on the above results,the coal-oxygen composite mechanism of water-immerseddried coal is obtained,and it is considered that the key to the spontaneous combustion oxidation process of coal is to provide oxygen atoms and accelerate the formation of peroxides.
基金funding by the National Natural Science Foundation of China (No. 51574279)Outstanding Youth Science Foundation of Chongqing China (No. cstc2013jcyjjq90001)Open project by State Key Laboratory of Coal Mine Disaster Dynamics and Control Chongqing University (No. 2011DA105287-FW201302)
文摘Spontaneous combustion of coal seam has been and continues to be a big problem in coal mines. It could pose great threat to the safety of the whole mine and all miners, especially when it occurs in or nearby coal mines. Besides, environment of area surrounded mines during combustion can be threatened where large amount of toxic gases including CO_2, CO, SO_2 and H_2S can be leased by fire in mine. Hence, it is important and significant for scholars to study the controlling and preventing of the coal seam fire. In this paper, the complicated reasons for the occurrence and development of spontaneous combustion in coal seam are analysed and different models under various air leakage situations are built as well. Based on the model and approximately calculation, the difficulty of fire extinguishment in coal seam is pointed out as the difficulty and poor effect to remove the large amount of heat released. Detailed measurements about backfilling and case analyses are also provided on the basis of the recent ten years' practice of controlling spontaneous combustion in coal seams in China. A technical fire prevention and control method has been concluded as five steps including detection, prevention, sealing, injection and pressure adjustment. However, various backfill materials require different application and environmental factors, so in this paper, analyses and discussion about the effect and engineering application of prevention of spontaneous combustion are provided according to different backfilling technologies and methods. Once the aforementioned fire prevention can be widely applied and regulated in mines, green mining will be achievable concerning mine fire prevention and control.
文摘Abstract Pyrite has a significant effect on the spontaneous combustion of coal. The presence of pyrite can change the propensity of coal towards spontaneous combustion. The influences of various pyrite contents on the parameters of spontaneous combustion, such as index gases, temperature and released heat etc., were investigated in this study, Coal samples with different pyrite contents (0 %, 3 %, 5 %, 7 % and 9 %) were made by mixing coal and pyrite. The oxidation experiments under temperature-programmed condition were carried out to test the release rate of gaseous oxidation products at different temperatures. Differential scanning calorimeter (DSC) was employed to measure the intensity of heat release during coal oxidation for various pyrite contents. The results indicate that pyrite can nonlinearly accelerate the process of spontaneous combustion. The coal sample with a pyrite content of 5 % has the largest CO release rate and oxygen adsorption as well. However, the coal sample with a pyrite content of ? % has the largest rate of heat flow according to the results from the DSC tests. Pyrite contents of 5 %-7 % in coal has the most significant effects on spontaneous combustion within the range of this study. The conclusions are conducive to the evaluation and control for the spontaneous combustion of coal.
基金Projects(51304238,51534008)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘To explore a new evaluation method for spontaneous combustion tendency of different areas in sulfide ore heap, ore samples from a pyrite mine in China were taken as experimental materials, and the temperature variations of the measuring points of simulated ore heap were measured. Combined with wavelet transform and nonlinear parameters extraction, a new method for spontaneous combustion tendency of different areas in sulfide ore heap based on nonlinear parameters was proposed and its reliability was verified by field test. The results indicate that temperature field evolution of the simulated ore heap presents significant spatial difference during self-heating process. Area with the maximum increasing extent of temperature in sulfide ore heap changes notably with the proceeding of self-heating reaction. Self-heating of sulfide ore heap is a chaotic evolution process, which means that it is feasible to evaluate spontaneous combustion tendency of different areas by nonlinear analysis method. There is a relatively strong correlation between the maximum Lyapunov exponent and spontaneous combustion tendency with the correlation coefficient of 0.9792. Furthermore, the sort of the maximum Lyapunov exponent is consistent with that of spontaneous combustion tendency. Therefore, spontaneous combustion tendency of different areas in sulfide ore heap can be evaluated by means of the maximum Lyapunov exponent method.
基金conducted in the context of coal-shale spontaneous combustion in the eMalahleni coalfields, South Africa was financially sponsored by Coaltech
文摘Coal and coal-shale both tend to undergo spontaneous combustion under favourable atmospheric conditions. The Wits-Ehac index has been developed in South Africa since the late 1980's to test the spontaneous combustion liability of coal. However, in some cases, the Wits-Ehac index fails to produce tangible results when testing coal-shales. To overcome this problem, a new apparatus has been developed to test carbonaceous materials such as coal and coal-shale under chemical reactions with oxygen and an index has been obtained. This index is called the Wits-CT index. The equipment emulates the influence of oxygen adsorption on carbonaceous material for a period of 24 h without a heating system.The Wits-CT index uses the total carbon content of the sample and the temperature variations obtained from the samples during reaction with oxygen to predict the spontaneous combustion liability. Eighteen samples have been analyzed using both indices and the results are in-line. It was found that coals and coal-shales with higher values of the Wits-CT index are more liable to spontaneous combustion.Further research on different coal-shales is underway in order to establish an extensive database for coal and coal-shales, together with known incidences of self-heating.
基金Projects(51274099,51474106)supported by the National Natural Science Foundation of China
文摘The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory determination were initialized for the value which was defined as "K". The ratio of each index gas and value of "K", and the ratio of combination index gases and value of "K", were analyzed simultaneously. The research results show that for this coal mine, if there is carbon monoxide in the gas sample, the phenomenon of oxidation and temperature rising for coal exists in this mine; if there is C_2H_4 in the gas sample, the temperature of coal perhaps exceeds 130 °C. If the coal temperature is between 35 °C and 130 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(CO)/K mainly; if the temperature of coal is between 130 °C and 300 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(C_2H_6)/Φ(C_2H_2) and Φ(C_2H_6)/K. The research results provide experimental basis for the prediction of coal spontaneous combustion in Anyuan coal mine, and have better guidance on safe production of this coal mine.
基金Supported by Natural Science Program of Shaanxi Province Education Department (05JK261)
文摘By solving steady model of air flow diffusion and chemical reaction in loose coal, distribution of oxygen concentration and flow velocity magnitude were obtained. Compared the simulating results with critic value as well as duration of spontaneous combustion from large-scale spontaneous combustion experiment, 'three zones' of spontaneous combustion were partitioned and mining conditions to avoid spontaneous combustion were obtained. The above method was employed to partition 'three zones' in gob of fully mechanized top-coal caving long wall face and got fairly good result. Calculation of the above method is much smaller than simulating the whole process of coal spontaneous combustion, but the prediction precision can satisfy the demand of predicting and extinguishing spontaneous combustion in mining.
基金support provided by the National Natural Science Foundation of China (No20807056)the Research Fund for the Doctoral Program of Higher Education of China (No20060290506)the Foundation of China University of Mining & Technology (Nos0H060097 and 0H080254)
文摘Coal samples in the air for three months were characterized by Thermogravimetric Analysis (TGA). The effect of a PVA oxygen-insulating barrier on the spontaneous combustion of coal was examined. The moisture loss activation energy, oxidation activation energy and combustion activation energy were calculated by an integral method using the Coats-Redfen formula. The results show that the tendency for spontaneous combustion of three coal samples (judged by the activation energy) falls in the order: CYW>YJL>SW. The oxidation activation energy and combustion activation energy of coal protected by the PVA oxygen-insulating barrier increased. A significant increase in the combustion activation energy was noted, especially for the CYW coal where the in-crease was 28.53 kJ/mol. Hence, oxidation of the protected coal samples was more difficult. The PVA oxygen-insulating barrier helps to prevent spontaneous combustion of the coal.
基金Project 20050290010 supported by the Doctoral Foundation of Chinese Education Ministry
文摘Spontaneous combustion is one of the greatest disasters in coal mines. Early recognition is important because it may be a potential inducement for other coalmine accidents. However, early recognition is difficult because of the complexity of different coal mines. Fuzzy clustering has been proposed to incorporate the uncertainty of spontaneous combustion in coal mines and it can give a clear degree of classification of combustion. Because FCM clustering tends to become trapped in local minima, a new approach of fuzzy c-means clustering based on a genetic algorithm is there- fore proposed. Genetic algorithm is capable of locating optimal or near optimal solutions to difficult problems. It can be applied in many fields without first obtaining detailed knowledge about correlation. It is helpful in improving the effec- tiveness of fuzzy clustering in detecting spontaneous combustion. The effectiveness of the method is demonstrated by means of an experiment.
基金Supported by the National Natural Science Foundation of China (51074168) the Specialized Fund for the Basic Research Operating Expenses Program of Central College(2010QZ03)
文摘The influence of gas drainage on float coal spontaneous combustion in the work face with "U" style ventilation was studied. Numerical simulation was used to compare the mutative law of steady flow and density field in the gob area under different drainage conditions by solving the equation set, including mass, momentum, and component transition. Consequently, the sequence of drainage effect and safety was obtained. The result manifests that the more effective the drainage pattern is, the easier float coal spontaneous combustion is caused due to air being guided into the depth of the gob area when the drainage position is arranged in the gas accumulation area. If the widened scope of oxidation zone exceeds the upper limit of the work face advancing speed, nitrogen injection should be applied to decrease the probability of spontaneous combustion. Then, the pipe laying drainage in the upper angle is most economical and safe compared with other drainage patterns when only the situation of gas accumulation is controlled in the upper angle. Finally, drainage pressure must not be too great. Otherwise the drainage density will decrease even if hazard is caused by back flow possibly happening in the return outlet when the drainage position is arranged near the work face.
基金National Natural Science Foundation(50474010)Eleventh Five Year Key Technologies(2006BAK03B05)
文摘Discussed latest research results of basic theory research of coal spontaneous combustion in detail,with quantum chemical theory and method and experiment syste- matically studied chemical structure of coal molecule,adsorption mechanism of coal sur- face to oxygen molecule and chemical reaction mechanism and process of spontaneous combustion of organic macromolecule and low molecular weight compound in coal from microcosmic view,and established complete theoretical system of the mechanism of coal spontaneous combustion.
基金Project(51304051)supported by the National Natural Science Foundation of ChinaProject(2012J05088)supported by the Natural Science Foundation of Fujian Province,China+1 种基金Project(022409)supported by School Talent Award of Fuzhou University,ChinaProject(2013-XQ-18)supported by Science&Technology Development Foundation of Fuzhou University,China
文摘Three representative sulfide ore samples were collected from typical metal mines,and their corresponding pre-oxidized products were obtained under nature environment.The thermal behaviors of each sample at heating rates of 5,10,15 and 20 °C/min in air flow from ambient temperature to 800 °C were studied by simultaneous thermal analysis and the TG/DSC curves before and after the pre-oxidation were compared.By the peak temperature of DTG curves,the whole reaction process for each sample was divided into different stages,and the apparent activation energies were calculated by the Ozawa-Flynn-Wall method.The results show that the reaction process of each sample after pre-oxidation is more complex,with quicker reaction rates,fewer heat production quantities,and higher or lower ignition-points.The apparent activation energies decrease from 364.017-474.228 kJ/mol to 244.523- 333.161 kJ/mol.Therefore,sulfide ores are more susceptible to spontaneous combustion after the pre-oxidation.
文摘The characterization of the physical and chemical properties of coal on a standard provides an understanding of its characteristics towards spontaneous combustion.The trend of linear relationships between coal recording standards(%air-dried(ad),%dry(db)and%dry ash free(daf)basis)of 30 selected coal samples from the Witbank coalfields and spontaneous combustion liability indices were evaluated.The spontaneous combustion liability indices of these samples were evaluated by crossing point temperature(XPT),Stage II Slope,FCC(Feng,Chakravorty,Cochrane)and the Wits-Ehac tests,while the coal properties were determined from the proximate and ultimate analyses.The results obtained from these coal properties were related to different liability indices to develop trends of linear relationships using regression analysis.The ad basis indicated higher correlation coefficients than the db and daf basis for the XPT and FCC index,while the daf showed higher correlation coefficients than the ad and db basis for the Wits-Ehac index.It was found that the trend of linear relationships of these coal properties differs from one liability index to the next.The XPTs showed a better trend followed by the Stage II Slope on the coal properties among the spontaneous combustion liability indices evaluated.
基金the financial support provided by the Major Science and Technology Projects of Inner Mongolia Autonomous Region under Grant No.RZ190001148Fund of Education Department of Inner Mongolia Autonomous Region under Grant No.NJZY21480.
文摘A simplified model for SO_(2) generation during spontaneous combustion of coal gangue was put forward and validated using the measured data.Using the proposed model,the effects of initial temperature inside the gangue and fresh air supply on SO_(2) generation were discussed.The results showed that,higher initial temperature inside the gangue could accelerate the oxidation rate of FeS_(2) and increase the maximum concentration of SO_(2).If initial temperature inside the gangue increased by about 37%,the total SO_(2) generation increased by 166%.Fresh air supply had less significant effect on the oxidation rate of FeS_(2).However,the higher the fresh air supply was,the more FeS_(2) could be oxidized,which ultimately produced more SO_(2).Although the computed results and the measured data concerning the inner locations inside the gangue had a certain degree of error,the proposed model can provide a relatively precise total release of SO_(2) within acceptable accuracy.Besides,this method provides a useful prototype to predict the generation of hazardous materials,such as CO,NO_(x),and chlorine during the spontaneous combustion of coal gangue.
文摘Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself,burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combustion have been reported as a result of self-heating of reactive coal-shales. The intrinsic properties and spontaneous combustion tests of 28 selected coal and coal-shale samples were conducted and a relationship between the two has been established. Intrinsic properties were obtained by using the proximate and ultimate analysis, and spontaneous combustion liability tests results were obtained by using the Wits-Ehac and Wits-CT indices. The experimental results show that intrinsic properties of these materials complement to the spontaneous combustion liability tests results. Comparative analyses of intrinsic properties and spontaneous combustion characteristics indicate similarities between the mechanism of coal oxidation and that of the oxidative processes undergone by coal-shales. For the tested samples, coal samples have a higher intrinsic spontaneous combustion reactivity rating than the coal-shales.Furthermore, an increase in carbon, moisture, hydrogen, volatile matter, nitrogen and a decrease in ash content indicate an increased proneness to self-heating. The concentration of pyrite found in the coal-shales accelerates self-heating. The event of spontaneous combustion can occur if coal-shales absorb sufficient oxygen when subjected to atmospheric conditions.
基金Science of Fire Natural Science Foundation of China(2001CB40960102)
文摘CO has been used widely in the production process of colliery as an index gas to predict spontaneous combustion of coal. But in some collieries there are CO gas in the upper corner of the face all the times, sometime CO gas even exceeds the regulated critical index. This phenomenon is much more obvious in the fully-mechanized longwall face and fully-mechanized longwall and top-coal caving face. Although many measures of fire-proof and fire-extinguishing have been adopted, the flowing amount of CO gas can be only decreasd, but can not be eliminated completely. Using the different kinds of coal, the experiment of coal oxidation was made at the low temperature. The experiment indicates that some kinds of coal can produce CO under the condition of normal temperature oxidation, sometime the CO consistency is very high, and the intension of CO can be decreased with oxidation time prolonging. Selecting rational critical value of CO is the kev to predicting spontaneous combustion of coal correctly and reliably. The problem of selecting retional critical value of CO was studied. Finally, the amount of CO gas released by different kinds of coal was obtained under normal temperature condition.
文摘The spontaneous combustion event in coal stockpiles is inevitable when appropriate environmental conditions are available. The objective of a computerized measurement system is to measure temperature changes existing in a coal stockpile. In order to achieve this intention, the electrical signal conversion of temperatures sensed by 20 temperature sensors placed in certain points inside the coal stockpile, the transfer of these electrical signals into computer media by using analogue-digital conversion unit after applying necessary filterization and upgrading processes and the record of these information into a database in particular time intervals are provided. Afterwards, the diagrams of these time-temperature data are plotted. With the help of these graphs, the competent company will be able to examine the behavior of coal stockpiles in terms of spontaneous combustion and take necessary precautions against self-combustion beforehand.
基金supported by China National Science Foundation of China (Nos.51074158 and 51304189)the Youth Science and Research Fund of China University of Mining and Technology of China (No.2009A006)
文摘It’s necessary to forecast the shortest spontaneous combustion period for preventing and controlling the coal spontaneous combustion.During the experimental process,a calculating model of the SSCP is established on the basis of the oxidative heat release intensity and thermal capacity at different temperatures.According to the basic parameters of spontaneous combustion,heat of water evaporation and gas desorption,the SSCPs of different coals are further predicted.Finally,this study analyzed the relationships of the SSCP and the judging indexes of the self-ignite tendency.The result shows that the SSCP non-linearly increases with the decrease of dynamic oxygen adsorption and increase of activation energy.Compared with the practical fire situation of mine,this reliable method can meet the actual requirement of mine production.