The rate of retear after surgical repair remains high.Mesenchymal stem cells(MSCs)have been extensively employed in regenerative medicine for several decades.However,safety and ethical concerns constrain their clinica...The rate of retear after surgical repair remains high.Mesenchymal stem cells(MSCs)have been extensively employed in regenerative medicine for several decades.However,safety and ethical concerns constrain their clinical application.Tendon Stem/Progenitor Cells(TSPCs)-derived exosomes have emerged as promising cellfree therapeutic agents.Therefore,urgent studies are needed to investigate whether TSPC-Exos could enhance tendon-bone healing and elucidate the underlying mechanisms.In this study,TSPC-Exos were found to promote the proliferation,migration,and expression of fibrogenesis markers in BMSCs.Furthermore,TSPC-Exos demonstrated an ability to suppress the polarization of M1 macrophages while promoting M2 macrophage polarization.In a rat model of rotator cuff repair,TSPC-Exos modulated inflammation and improved the histological structure of the tendon-bone interface,the biomechanical properties of the repaired tendon,and the function of the joint.Mechanistically,TSPC-Exos exhibited high expression of miR-21a-5p,which regulated the expression of PDCD4.The PDCD4/AKT/mTOR axis was implicated in the therapeutic effects of TSPC-Exos on proliferation,migration,and fibrogenesis in BMSCs.This study introduces a novel approach utilizing TSPC-Exos therapy as a promising strategy for cell-free therapies,potentially benefiting patients with rotator cuff tear in the future.展开更多
Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells...Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription,and the products were labeled with α- 32 P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes,and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated,and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.展开更多
Tendon ageing is a complicated process caused by multifaceted pathways and ageing plays a critical role in the occurrence and severity of tendon injury.The role of tendon stem/progenitor cells(TSPCs)in tendon maintena...Tendon ageing is a complicated process caused by multifaceted pathways and ageing plays a critical role in the occurrence and severity of tendon injury.The role of tendon stem/progenitor cells(TSPCs)in tendon maintenance and regeneration has received increasing attention in recent years.The decreased capacity of TSPCs in seniors contributes to impaired tendon functions and raises questions as to what extent these cells either affect,or cause ageing,and whether these age-related cellular alterations are caused by intrinsic factors or the cellular environment.In this review,recent discoveries concerning the biological characteristics of TSPCs and age-related changes in TSPCs,including the effects of cellular epigenetic alterations and the mechanisms involved in the ageing process,are analyzed.During the ageing process,TSPCs ageing might occur as a natural part of the tendon ageing,but could also result from decreased levels of growth factor,hormone deficits and changes in other related factors.Here,we discuss methods that might induce the rejuvenation of TSPC functions that are impaired during ageing,including moderate exercise,cell extracellular matrix condition,growth factors and hormones;these methods aim to rejuvenate the features of youthfulness with the ultimate goal of improving human health during ageing.展开更多
Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engin...Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon- related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a ootential stem cell source for tissue enEineerin~ of tendon-like tissue.展开更多
Tendinopathy is a challenging complication observed in patients with diabetes mellitus.Tendinopathy usually leads to chronic pain,limited joint motion,and even ruptured tendons.Imaging and histological analyses have r...Tendinopathy is a challenging complication observed in patients with diabetes mellitus.Tendinopathy usually leads to chronic pain,limited joint motion,and even ruptured tendons.Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes,including disorganized arrangement of collagen fibers,microtears,calcium nodules,and advanced glycation end product(AGE)deposition.Tendon-derived stem/progenitor cells(TSPCs)were found to maintain hemostasis and to participate in the reversal of tendinopathy.We also discovered the aberrant osteochondrogenesis of TSPCs in vitro.However,the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear.In this review,we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo.展开更多
This report describes a 61-year-old female with a giant cell tumor of the tendon sheath (GCT-TS). MRI showed that an elliptical abnormal signal was observed over the infrapatellar region of the right knee. We directly...This report describes a 61-year-old female with a giant cell tumor of the tendon sheath (GCT-TS). MRI showed that an elliptical abnormal signal was observed over the infrapatellar region of the right knee. We directly do arthroscopy to remove the tumor. An oval irregular mass of about 2.0 cm × 1.5 cm × 1 cm in the right knee joint was found. It was hard and had a dark red surface and the pedicle of the mass was connected with the joint capsule and infrapatellar fat pad. Nodular GCT-TS occurs less frequently in large joints than the small joints of the fingers and toes. The current report demonstrates the unique characteristics of the GCT-TS that extends around the ankle and invades the knee and proximal humerus.展开更多
Giant cell tumor of the tendon sheath is the second most common tumor of the hand often referred to as xanthoma. Histologically these tumors are composed of multinucleated giant cells, polyhedral histiocytes, fibrosis...Giant cell tumor of the tendon sheath is the second most common tumor of the hand often referred to as xanthoma. Histologically these tumors are composed of multinucleated giant cells, polyhedral histiocytes, fibrosis and hemosiderin deposits. Marginal excision of giant cell tumor of the tendon sheath is the treatment of choice. We present a case of xanthoma of flexor pollicis longus tendon presented as a single enlarging mass in volar aspect of left thumb. After clinical diagnosis, work-up is done with ultrasound, FNAC and excision biopsy.展开更多
Tendon disorders are associated with increased morbidity and a reduction in the quality of life, especially in people of working age. Recently, a new approach, cell-based therapy, offers promising potential to treat t...Tendon disorders are associated with increased morbidity and a reduction in the quality of life, especially in people of working age. Recently, a new approach, cell-based therapy, offers promising potential to treat tendon injuries. Mesenchymal stem cells are the most suitable candidates for such therapies due to their capacity to differentiate into cells of mesodermal origin, their paracrine properties and their potential use in autologous transplantation. This review summarizes experimental as well as clinical data focusing on the use of mesenchymal stem cells to treat tendinophaties.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.82172511,81972125 and 82172510)Shenzhen“San-Ming”Project of Medicine(No.SZSM202211019).
文摘The rate of retear after surgical repair remains high.Mesenchymal stem cells(MSCs)have been extensively employed in regenerative medicine for several decades.However,safety and ethical concerns constrain their clinical application.Tendon Stem/Progenitor Cells(TSPCs)-derived exosomes have emerged as promising cellfree therapeutic agents.Therefore,urgent studies are needed to investigate whether TSPC-Exos could enhance tendon-bone healing and elucidate the underlying mechanisms.In this study,TSPC-Exos were found to promote the proliferation,migration,and expression of fibrogenesis markers in BMSCs.Furthermore,TSPC-Exos demonstrated an ability to suppress the polarization of M1 macrophages while promoting M2 macrophage polarization.In a rat model of rotator cuff repair,TSPC-Exos modulated inflammation and improved the histological structure of the tendon-bone interface,the biomechanical properties of the repaired tendon,and the function of the joint.Mechanistically,TSPC-Exos exhibited high expression of miR-21a-5p,which regulated the expression of PDCD4.The PDCD4/AKT/mTOR axis was implicated in the therapeutic effects of TSPC-Exos on proliferation,migration,and fibrogenesis in BMSCs.This study introduces a novel approach utilizing TSPC-Exos therapy as a promising strategy for cell-free therapies,potentially benefiting patients with rotator cuff tear in the future.
文摘Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription,and the products were labeled with α- 32 P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes,and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated,and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.
基金Supported by the National Natural Science Foundation of China,No.81871812 and No.81572187National Natural Science Foundation of China for Young Scholars,No.81201422+3 种基金Natural Science Foundation of Jiangsu Province for Young Scholars,No.BK2012334“Summit of the Six Top Talents” Program of Jiangsu Province,No.2013-WSW-054Jiangsu Provincial Medical Talent,The Project of Invigorating Health Care through Science,Technology and Education,No.ZDRCA2016083The Six Projects Sponsoring Talent Summits of Jiangsu Province,China,No.LGY2017099
文摘Tendon ageing is a complicated process caused by multifaceted pathways and ageing plays a critical role in the occurrence and severity of tendon injury.The role of tendon stem/progenitor cells(TSPCs)in tendon maintenance and regeneration has received increasing attention in recent years.The decreased capacity of TSPCs in seniors contributes to impaired tendon functions and raises questions as to what extent these cells either affect,or cause ageing,and whether these age-related cellular alterations are caused by intrinsic factors or the cellular environment.In this review,recent discoveries concerning the biological characteristics of TSPCs and age-related changes in TSPCs,including the effects of cellular epigenetic alterations and the mechanisms involved in the ageing process,are analyzed.During the ageing process,TSPCs ageing might occur as a natural part of the tendon ageing,but could also result from decreased levels of growth factor,hormone deficits and changes in other related factors.Here,we discuss methods that might induce the rejuvenation of TSPC functions that are impaired during ageing,including moderate exercise,cell extracellular matrix condition,growth factors and hormones;these methods aim to rejuvenate the features of youthfulness with the ultimate goal of improving human health during ageing.
基金supported by the Natural Science Foundation of China (81171470 and 81100761)the key clinical specialty discipline construction programme of Fujian, Chinathe Key Project of Science and Technology Bureau of Jiangsu Province (BL2013002)
文摘Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon- related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a ootential stem cell source for tissue enEineerin~ of tendon-like tissue.
基金National Natural Science Foundation of China,No.81572187 and No.81871812Jiangsu Provincial Medical Talent,The Project of Invigorating Health Care through Science,Technology and Education,No.ZDRCA2016083+2 种基金Natural Science Foundation of Jiangsu Province for Young Scholars,China,No.BK20200398Entrepreneurship and Innovation Program of Jiangsu Province,China,No.1190000054and The Six Projects Sponsoring Talent Summits of Jiangsu Province,China,No.LGY2017099。
文摘Tendinopathy is a challenging complication observed in patients with diabetes mellitus.Tendinopathy usually leads to chronic pain,limited joint motion,and even ruptured tendons.Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes,including disorganized arrangement of collagen fibers,microtears,calcium nodules,and advanced glycation end product(AGE)deposition.Tendon-derived stem/progenitor cells(TSPCs)were found to maintain hemostasis and to participate in the reversal of tendinopathy.We also discovered the aberrant osteochondrogenesis of TSPCs in vitro.However,the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear.In this review,we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo.
文摘This report describes a 61-year-old female with a giant cell tumor of the tendon sheath (GCT-TS). MRI showed that an elliptical abnormal signal was observed over the infrapatellar region of the right knee. We directly do arthroscopy to remove the tumor. An oval irregular mass of about 2.0 cm × 1.5 cm × 1 cm in the right knee joint was found. It was hard and had a dark red surface and the pedicle of the mass was connected with the joint capsule and infrapatellar fat pad. Nodular GCT-TS occurs less frequently in large joints than the small joints of the fingers and toes. The current report demonstrates the unique characteristics of the GCT-TS that extends around the ankle and invades the knee and proximal humerus.
文摘Giant cell tumor of the tendon sheath is the second most common tumor of the hand often referred to as xanthoma. Histologically these tumors are composed of multinucleated giant cells, polyhedral histiocytes, fibrosis and hemosiderin deposits. Marginal excision of giant cell tumor of the tendon sheath is the treatment of choice. We present a case of xanthoma of flexor pollicis longus tendon presented as a single enlarging mass in volar aspect of left thumb. After clinical diagnosis, work-up is done with ultrasound, FNAC and excision biopsy.
文摘Tendon disorders are associated with increased morbidity and a reduction in the quality of life, especially in people of working age. Recently, a new approach, cell-based therapy, offers promising potential to treat tendon injuries. Mesenchymal stem cells are the most suitable candidates for such therapies due to their capacity to differentiate into cells of mesodermal origin, their paracrine properties and their potential use in autologous transplantation. This review summarizes experimental as well as clinical data focusing on the use of mesenchymal stem cells to treat tendinophaties.