Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square...Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor.展开更多
We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to sev...We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.展开更多
We define weakly positive tensors and study the relations among essentially positive tensors, weakly positive tensors, and primitive tensors. In particular, an explicit linear convergence rate of the Liu-Zhou-Ibrahim...We define weakly positive tensors and study the relations among essentially positive tensors, weakly positive tensors, and primitive tensors. In particular, an explicit linear convergence rate of the Liu-Zhou-Ibrahim(LZI) algorithm for finding the largest eigenvalue of an irreducible nonnegative tensor, is established for weakly positive tensors. Numerical results are given to demonstrate linear convergence of the LZI algorithm for weakly positive tensors.展开更多
In this paper,we propose a bound for ratio of the largest eigenvalue and second largest eigenvalue in module for a higher-order tensor.From this bound,one may deduce the bound of the second largest eigenvalue in modul...In this paper,we propose a bound for ratio of the largest eigenvalue and second largest eigenvalue in module for a higher-order tensor.From this bound,one may deduce the bound of the second largest eigenvalue in module for a positive tensor,and the bound can reduce to the matrix cases.展开更多
In this paper, we introduce the complex completely positive tensor, which has a symmetric complex decomposition with all real and imaginary parts of the decomposition vectors being non-negative. Some properties of the...In this paper, we introduce the complex completely positive tensor, which has a symmetric complex decomposition with all real and imaginary parts of the decomposition vectors being non-negative. Some properties of the complex completely positive tensor are given. A semidefinite algorithm is also proposed for checking whether a complex tensor is complex completely positive or not. If a tensor is not complex completely positive, a certificate for it can be obtained;if it is complex completely positive, a complex completely positive decomposition can be obtained.展开更多
In this paper,a method with parameter is proposed for finding the spectral radius of weakly irreducible nonnegative tensors.What is more,we prove this method has an explicit linear convergence rate for indirectly posi...In this paper,a method with parameter is proposed for finding the spectral radius of weakly irreducible nonnegative tensors.What is more,we prove this method has an explicit linear convergence rate for indirectly positive tensors.Interestingly,the algorithm is exactly the NQZ method(proposed by Ng,Qi and Zhou in Finding the largest eigenvalue of a non-negative tensor SIAM J Matrix Anal Appl 31:1090–1099,2009)by taking a specific parameter.Furthermore,we give a modified NQZ method,which has an explicit linear convergence rate for nonnegative tensors and has an error bound for nonnegative tensors with a positive Perron vector.Besides,we promote an inexact power-type algorithm.Finally,some numerical results are reported.展开更多
Tensor decomposition is an important research area with numerous applications in data mining and computational neuroscience.An important class of tensor decomposition is sum-of-squares(SOS)tensor decomposition.SOS ten...Tensor decomposition is an important research area with numerous applications in data mining and computational neuroscience.An important class of tensor decomposition is sum-of-squares(SOS)tensor decomposition.SOS tensor decomposition has a close connection with SOS polynomials,and SOS polynomials are very important in polynomial theory and polynomial optimization.In this paper,we give a detailed survey on recent advances of high-order SOS tensors and their applications.It first shows that several classes of symmetric structured tensors available in the literature have SOS decomposition in the even order symmetric case.Then,the SOS-rank for tensors with SOS decomposition and the SOS-width for SOS tensor cones are established.Further,a sharper explicit upper bound of the SOS-rank for tensors with bounded exponent is provided,and the exact SOS-width for the cone consists of all such tensors with SOS decomposition is identified.Some potential research directions in the future are also listed in this paper.展开更多
文摘Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor.
基金supported by National Natural Science Foundation of China(Grant No.11301022)the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University(Grant Nos.RCS2014ZT20 and RCS2014ZZ001)+1 种基金Beijing Natural Science Foundation(Grant No.9144031)the Hong Kong Research Grant Council(Grant Nos.Poly U 501909,502510,502111 and 501212)
文摘We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.
基金Acknowledgments. This first author's work was supported by the National Natural Science Foundation of China (Grant No. 10871113). This second author's work was supported by the Hong Kong Research Grant Council.
文摘We define weakly positive tensors and study the relations among essentially positive tensors, weakly positive tensors, and primitive tensors. In particular, an explicit linear convergence rate of the Liu-Zhou-Ibrahim(LZI) algorithm for finding the largest eigenvalue of an irreducible nonnegative tensor, is established for weakly positive tensors. Numerical results are given to demonstrate linear convergence of the LZI algorithm for weakly positive tensors.
基金the National Natural Science Foundation of China(Nos.11271144 and 11671158)The third author was supported in part by University of Macao(No.MYRG2015-00064-FST).
文摘In this paper,we propose a bound for ratio of the largest eigenvalue and second largest eigenvalue in module for a higher-order tensor.From this bound,one may deduce the bound of the second largest eigenvalue in module for a positive tensor,and the bound can reduce to the matrix cases.
基金National Natural Science Foundation of China (Grant No. 11701356)supported by National Natural Science Foundation of China (Grant No. 11571234)+2 种基金supported by National Natural Science Foundation of China (Grant No. 11571220)National Postdoctoral Program for Innovative Talents (Grant No. BX201600097)China Postdoctoral Science Foundation (Grant No. 2016M601562)。
文摘In this paper, we introduce the complex completely positive tensor, which has a symmetric complex decomposition with all real and imaginary parts of the decomposition vectors being non-negative. Some properties of the complex completely positive tensor are given. A semidefinite algorithm is also proposed for checking whether a complex tensor is complex completely positive or not. If a tensor is not complex completely positive, a certificate for it can be obtained;if it is complex completely positive, a complex completely positive decomposition can be obtained.
基金the Ph.D.Candidate Research Innovation Fund of Nankai University.Qing-Zhi Yang’s work was supported by the National Natural Science Foundation of China(No.11271206)Doctoral Fund of Chinese Ministry of Education(No.20120031110024).
文摘In this paper,a method with parameter is proposed for finding the spectral radius of weakly irreducible nonnegative tensors.What is more,we prove this method has an explicit linear convergence rate for indirectly positive tensors.Interestingly,the algorithm is exactly the NQZ method(proposed by Ng,Qi and Zhou in Finding the largest eigenvalue of a non-negative tensor SIAM J Matrix Anal Appl 31:1090–1099,2009)by taking a specific parameter.Furthermore,we give a modified NQZ method,which has an explicit linear convergence rate for nonnegative tensors and has an error bound for nonnegative tensors with a positive Perron vector.Besides,we promote an inexact power-type algorithm.Finally,some numerical results are reported.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.11601261,11671228)the Natural Science Foundation of Shandong Province(No.ZR2019MA022).
文摘Tensor decomposition is an important research area with numerous applications in data mining and computational neuroscience.An important class of tensor decomposition is sum-of-squares(SOS)tensor decomposition.SOS tensor decomposition has a close connection with SOS polynomials,and SOS polynomials are very important in polynomial theory and polynomial optimization.In this paper,we give a detailed survey on recent advances of high-order SOS tensors and their applications.It first shows that several classes of symmetric structured tensors available in the literature have SOS decomposition in the even order symmetric case.Then,the SOS-rank for tensors with SOS decomposition and the SOS-width for SOS tensor cones are established.Further,a sharper explicit upper bound of the SOS-rank for tensors with bounded exponent is provided,and the exact SOS-width for the cone consists of all such tensors with SOS decomposition is identified.Some potential research directions in the future are also listed in this paper.