A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method ...A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix...The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix R is proposed. The proposed algorithm can improve the resolving power of the signal eigenvalues and overcomes the shortcomings of the traditional subspace methods, which cannot be applied to low SNR. Then the proposed method is applied to the direct sequence spread spectrum (DSSS) signal's signature sequence estimation. The performance of the proposed algorithm is analyzed, and some illustrative simulation results are presented.展开更多
In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spat...In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.展开更多
A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estim...A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estimation are derived, and simulations are performed for the commonly used digital bandpass signals, such as MPSK (M=2, 4, 8), MFSK (M=2, 4) and MQAM (M=16, 64, 128, 256) signals. Theoretical analyses and simulation results indicate that the proposed algorithm is ef- fective even when the SNR is below 0dB. Furthermore, the algorithm can provide a blind estimator in that it needs neither the parameters of the received signals, such as the carrier frequency, symbol rate and modulation scheme, nor the synchronization of the system.展开更多
为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降...为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。展开更多
为了提高重构相干信号测向算法的估计性能,降低算法运算量,提出了一种基于矩阵重构和酉变换方法的酉矩阵重构算法。该算法首先通过酉变换将阵列接收数据从复值计算转换为实值计算,使计算量大大降低;然后计算阵列协方差矩阵并进行特征值...为了提高重构相干信号测向算法的估计性能,降低算法运算量,提出了一种基于矩阵重构和酉变换方法的酉矩阵重构算法。该算法首先通过酉变换将阵列接收数据从复值计算转换为实值计算,使计算量大大降低;然后计算阵列协方差矩阵并进行特征值分解得到信号子空间,再将信号子空间重构为Toeplitz矩阵实现解相干并再次进行酉变换;最后通过特征值分解得到信号子空间并使用最小二乘法实现波达方向(direction of arrival,DOA)估计。相比于改进的旋转不变性的信号参数(estimation of signal parameters via rotational invariance techniques-like,ESPRIT-Like)算法和空间平滑处理算法,由于消除了噪声影响、构造了Toeplitz矩阵以及充分利用了数据的共轭信息,该算法的估计精度更高、具有更高的运算效率且在ESPRIT-Like算法失效的条件下新算法仍能有效估计DOA。本文算法的运行时间是ESPRIT-Like算法的71.2%,实验结果证明了该方法的有效性和真实性。展开更多
Hyperspectral images in remote sensing include hundreds of spectral bands that provide valuable information for accurately identify objects.In this paper,a new method of classifying hyperspectral images using spectral...Hyperspectral images in remote sensing include hundreds of spectral bands that provide valuable information for accurately identify objects.In this paper,a new method of classifying hyperspectral images using spectral spatial information has been presented.Here,using the hyperspectral signal subspace identification(HYSIME)method which estimates the signal and noise correlation matrix and selects a subset of eigenvalues for the best representation of the signal subspace in order to minimize the mean square error,subsets from the main sample space have been extracted.After subspace extraction with the help of the HYSIME method,the edge-preserving filtering(EPF),and classification of the hyperspectral subspace using a support vector machine(SVM),results were then merged into the decision-making level using majority rule to create the spectral-spatial classifier.The simulation results showed that the spectral-spatial classifier presented leads to significant improvement in the accuracy and validity of the classification of Indiana,Pavia and Salinas hyperspectral images,such that it can classify these images with 98.79%,98.88% and 97.31% accuracy,respectively.展开更多
提出了一种基于超声相控阵与宽带阵列信号处理的油中局部放电定位新方法。首先采用超声相控阵传感器直接检测局放超声宽带信号,并形成阵列模型;然后针对该超声波信号频段为50~300kHz的宽频特性,应用宽带阵列信号处理中的旋转信号子空间...提出了一种基于超声相控阵与宽带阵列信号处理的油中局部放电定位新方法。首先采用超声相控阵传感器直接检测局放超声宽带信号,并形成阵列模型;然后针对该超声波信号频段为50~300kHz的宽频特性,应用宽带阵列信号处理中的旋转信号子空间(rotational signal subspace,RSS)算法对其进行聚焦处理,通过聚焦矩阵将宽带阵列信号不同频率下的方向矩阵变换到同一中心频率,最大限度地保留原始信号的宽频空域信息,实现宽带信号方位信息的累积;最后应用多重信号分类法(multiple signal classification,MUSIC)与交叉定位原理对聚焦后窄带信号进行波达方向估计与空间定位。实验结果验证了对该定位方法的有效性。展开更多
提出一种基于信号子空间转换法(signal subspacetransform,SST)与快速子空间测向算法(fast subspaceestimation of DOA,FDOA)的局放超声阵列信号高精度测向新方法。首先利用SST算法对局放超声阵列信号进行聚焦处理,使得原始信号的宽频...提出一种基于信号子空间转换法(signal subspacetransform,SST)与快速子空间测向算法(fast subspaceestimation of DOA,FDOA)的局放超声阵列信号高精度测向新方法。首先利用SST算法对局放超声阵列信号进行聚焦处理,使得原始信号的宽频空域信息被最大限度地保留,从而实现宽带信号方位信息的累积。然后采用FDOA对聚焦后的窄带信号进行波达方向估计,FDOA无需特征分解,无需估计整个协方差矩阵,可提高运算速度,且具有更高的测向精度。在此基础之上,应用医学宽频超声信号和4 4超声阵列传感器模型,进行局放超声阵列信号测向仿真研究,仿真结果表明,测向误差小于2,验证了该方法的正确性。展开更多
基金supported by the National Natural Science Foundation of China(61301211)and the Aviation Science Foundation(20131852028)
文摘A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
文摘The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix R is proposed. The proposed algorithm can improve the resolving power of the signal eigenvalues and overcomes the shortcomings of the traditional subspace methods, which cannot be applied to low SNR. Then the proposed method is applied to the direct sequence spread spectrum (DSSS) signal's signature sequence estimation. The performance of the proposed algorithm is analyzed, and some illustrative simulation results are presented.
基金supported by the National Natural Science Foundation of China (62261047,62066040)the Foundation of Top-notch Talents by Education Department of Guizhou Province of China (KY[2018]075)+3 种基金the Science and Technology Foundation of Guizhou Province of China (ZK[2022]557,[2020]1Y004)the Science and Technology Research Program of the Chongqing Municipal Education Commission (KJQN202200637)PhD Research Start-up Foundation of Tongren University (trxyDH1710)Tongren Science and Technology Planning Project ((2018)22)。
文摘In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.
文摘A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estimation are derived, and simulations are performed for the commonly used digital bandpass signals, such as MPSK (M=2, 4, 8), MFSK (M=2, 4) and MQAM (M=16, 64, 128, 256) signals. Theoretical analyses and simulation results indicate that the proposed algorithm is ef- fective even when the SNR is below 0dB. Furthermore, the algorithm can provide a blind estimator in that it needs neither the parameters of the received signals, such as the carrier frequency, symbol rate and modulation scheme, nor the synchronization of the system.
文摘为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。
文摘为了提高重构相干信号测向算法的估计性能,降低算法运算量,提出了一种基于矩阵重构和酉变换方法的酉矩阵重构算法。该算法首先通过酉变换将阵列接收数据从复值计算转换为实值计算,使计算量大大降低;然后计算阵列协方差矩阵并进行特征值分解得到信号子空间,再将信号子空间重构为Toeplitz矩阵实现解相干并再次进行酉变换;最后通过特征值分解得到信号子空间并使用最小二乘法实现波达方向(direction of arrival,DOA)估计。相比于改进的旋转不变性的信号参数(estimation of signal parameters via rotational invariance techniques-like,ESPRIT-Like)算法和空间平滑处理算法,由于消除了噪声影响、构造了Toeplitz矩阵以及充分利用了数据的共轭信息,该算法的估计精度更高、具有更高的运算效率且在ESPRIT-Like算法失效的条件下新算法仍能有效估计DOA。本文算法的运行时间是ESPRIT-Like算法的71.2%,实验结果证明了该方法的有效性和真实性。
文摘Hyperspectral images in remote sensing include hundreds of spectral bands that provide valuable information for accurately identify objects.In this paper,a new method of classifying hyperspectral images using spectral spatial information has been presented.Here,using the hyperspectral signal subspace identification(HYSIME)method which estimates the signal and noise correlation matrix and selects a subset of eigenvalues for the best representation of the signal subspace in order to minimize the mean square error,subsets from the main sample space have been extracted.After subspace extraction with the help of the HYSIME method,the edge-preserving filtering(EPF),and classification of the hyperspectral subspace using a support vector machine(SVM),results were then merged into the decision-making level using majority rule to create the spectral-spatial classifier.The simulation results showed that the spectral-spatial classifier presented leads to significant improvement in the accuracy and validity of the classification of Indiana,Pavia and Salinas hyperspectral images,such that it can classify these images with 98.79%,98.88% and 97.31% accuracy,respectively.
文摘提出了一种基于超声相控阵与宽带阵列信号处理的油中局部放电定位新方法。首先采用超声相控阵传感器直接检测局放超声宽带信号,并形成阵列模型;然后针对该超声波信号频段为50~300kHz的宽频特性,应用宽带阵列信号处理中的旋转信号子空间(rotational signal subspace,RSS)算法对其进行聚焦处理,通过聚焦矩阵将宽带阵列信号不同频率下的方向矩阵变换到同一中心频率,最大限度地保留原始信号的宽频空域信息,实现宽带信号方位信息的累积;最后应用多重信号分类法(multiple signal classification,MUSIC)与交叉定位原理对聚焦后窄带信号进行波达方向估计与空间定位。实验结果验证了对该定位方法的有效性。