This paper is devoted to reviewing the results achieved so far in the application of the single-pixel imaging technique to terahertz(THz)systems.The use of THz radiation for imaging purposes has been largely explored ...This paper is devoted to reviewing the results achieved so far in the application of the single-pixel imaging technique to terahertz(THz)systems.The use of THz radiation for imaging purposes has been largely explored in the last twenty years,due to the unique capabilities of this kind of radiation in interrogating material properties.However,THz imaging systems are still limited by the long acquisition time required to reconstruct the object image and significant efforts have been recently directed to overcome this drawback.One of the most promising approaches in this sense is the so-called“single-pixel”imaging,which in general enables image reconstruction by patterning the beam probing the object and measuring the total transmission(or reflection)with a single-pixel detector(i.e.,with no spatial resolution).The main advantages of such technique are that i)no bulky moving parts are required to raster-scan the object and ii)compressed sensing(CS)algorithms,which allow an appropriate reconstruction of the image with an incomplete set of measurements,can be successfully implemented.Overall,this can result in a reduction of the acquisition time.In this review,we cover the experimental solutions proposed to implement such imaging technique at THz frequencies,as well as some practical uses for typical THz applications.展开更多
Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL...Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length.The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content,and the measurement results show the consistence with the reported results,in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line(MDL).With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed.The two-term Debye relaxation model is employed to explain our experimental results,revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules.These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology.展开更多
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
Terahertz(THz) imaging is progressing as a robust platform for myriad applications in the field of security,health,and material science.The THz regime,which comprises wavelengths spanning from microns to millimeters,i...Terahertz(THz) imaging is progressing as a robust platform for myriad applications in the field of security,health,and material science.The THz regime,which comprises wavelengths spanning from microns to millimeters,is non-ionizing and has very low photon energy:Making it inherently safe for biological imaging.Colorectal cancer is one of the most common causes of death in the world,while the conventional screening and standard of care yet relies exclusively on the physician's experience.Researchers have been working on the development of a flexible THz endoscope,as a potential tool to aid in colorectal cancer screening.This involves building a single-channel THz endoscope,and profiling the THz response from colorectal tissue,and demonstrating endogenous contrast levels between normal and diseased tissue when imaging in reflection modality.The current level of contrast provided by the prototype THz endoscopic system represents a significant step towards clinical endoscopic application of THz technology for invivo colorectal cancer screening.The aim of this paper is to provide a short review of the recent advances in THz endoscopic technology and cancer imaging.In particular,the potential of single-channel THz endoscopic imaging for colonic cancer screening will be highlighted.展开更多
Real-time terahertz(THz)imaging offers remarkable application possibilities,especially in the security and medical fields.However,most THz detectors work with scanners,and a long image acquisition time is required.Som...Real-time terahertz(THz)imaging offers remarkable application possibilities,especially in the security and medical fields.However,most THz detectors work with scanners,and a long image acquisition time is required.Some thermal detectors can achieve realtime imaging by using a focal plane array but have the drawbacks of low sensitivity due to a lack of suitable absorbing materials.In this study,we propose a novel photomechanical meta-molecule array by conveniently assembling THz meta-atom absorbers and bi-material cantilevers together,which can couple THz radiation to a mechanical deflection of the meta-molecules with high efficiency.By optically reading out the mechanical deflections of all of the meta-molecules simultaneously,real-time THz imaging can be achieved.A polyimide sacrificial layer technique was developed to fabricate the device on a glass wafer,which facilitates the transmission of a readout light while the THz wave radiates onto the meta-molecule array directly from the front side.THz images and video of various objects as well as infrared images of the human body were captured successfully with the fabricated metamolecule array.The proposed photomechanical device holds promise in applications in single and broadband THz as well as infrared imaging.展开更多
Flat mirrors, also known as flat parabolic surfaces, for millimeter-wave and terahertz imaging systems are demonstrated. This flat mirror is based on the metasurface in which an inexpensive printed circuit board techn...Flat mirrors, also known as flat parabolic surfaces, for millimeter-wave and terahertz imaging systems are demonstrated. This flat mirror is based on the metasurface in which an inexpensive printed circuit board technology is used to realize copper patterns printed on an FR4 substrate. Compared to the conventional reflector antennas used today in diverse applications (for homeland security, medical systems, communication, etc.), the suggested mirror has major advantages in process simplicity, mechanical flexibility, frequency alignment, weight, and cost. The theoretical background, simulation results, experimental results, and proof of concept are given in this Letter.展开更多
We simulate the measurements of an active bifocal terahertz imaging system to reproduce the ability of the system to detect the internal structure of foams having embedded defects.Angular spectrum theory and geometric...We simulate the measurements of an active bifocal terahertz imaging system to reproduce the ability of the system to detect the internal structure of foams having embedded defects.Angular spectrum theory and geometric optics tracing are used to calculate the incident and received electric fields of the system and the scattered light distribution of the measured object.The finite-element method is also used to calculate the scattering light distribution of the measured object for comparison with the geometric optics model.The simulations are consistent with the measurements at the central axis of the horizontal stripe defects.展开更多
A compact terahertz(THz) imaging system based on complementary compressive sensing has been proposed using two single-pixel detectors. By using a mechanical spatial light modulator, sampling in the transmission and ...A compact terahertz(THz) imaging system based on complementary compressive sensing has been proposed using two single-pixel detectors. By using a mechanical spatial light modulator, sampling in the transmission and reflection orientations was achieved simultaneously, which allows imaging with negative mask values. The improvement of THz image quality and anti-noise performance has been verified experimentally compared with the traditional reconstructed image, and is in good agreement with the numerical simulation. The demonstrated imaging system, with the advantages of high imaging quality and strong anti-noise property, opens up possibilities for new applications in the THz region.展开更多
In this article, two terahertz transmission imaging systems are built with a 2.52 THz continuous wave laser and two types of sensors. One is array scanning system using a 124×124 pyro-electric array camera as the...In this article, two terahertz transmission imaging systems are built with a 2.52 THz continuous wave laser and two types of sensors. One is array scanning system using a 124×124 pyro-electric array camera as the detector; the other is a point-wise scanning system utilizing a Golay cell as the detector. The imaging speed and quality is briefly analyzed. Terahertz (THz) imaging results demonstrate that the array scanning system has higher imaging speed with lower resolution. The point-wise scanning system has higher imaging quality with lower speed.展开更多
Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
The analysis on the thickness of polyamide plate using Terahertz Time Domain System(THz-TDS)in reflection mode is carried out.The refractive index,one of the optical parameters in terahertz band,is solved through the ...The analysis on the thickness of polyamide plate using Terahertz Time Domain System(THz-TDS)in reflection mode is carried out.The refractive index,one of the optical parameters in terahertz band,is solved through the mathematics model,and its value is 1.88.A kind of polyamide plate sample with four kinds of thickness is designed and the ability of THz-based method to detect defects or foreign bodies in fiber glass is verified by attaching metal plates to the back of fiberglass.By the comparison of traditional method and THz method,the terahertz method has a measurement error between 2.5%and 10%.As the thickness increases,the error tends to increase.The reason about the deviations is analyzed,as well as the systematic factors affecting the thickness measurement accuracy,in order to improve the accuracy of THz thickness measurement system and provide theoretical basis for designing terahertz thickness measurement system in the future.展开更多
Recently,the diagnoses of dental caries and other dental issues are in a queue as only X-ray-based techniques are available in most hospitals around the world.Terahertz(THz)parametric imaging(TPI)is the latest technol...Recently,the diagnoses of dental caries and other dental issues are in a queue as only X-ray-based techniques are available in most hospitals around the world.Terahertz(THz)parametric imaging(TPI)is the latest technology that can be applied for medical applications,especially dental caries.This technology is harmless and thus suitable for biological samples owing to the low energy of THz emission.In this paper,a developed TPI system is used to investigate the two-dimensional(2 D)and three-dimensional(3D)images of different samples from human teeth.After analyzing the measured images of human teeth,the results suggest that the THz parametric technology is capable of investigating the inner side structure of the teeth.This technique can be useful in detecting the defects in all types of human and animal teeth.The measurement and analytical calculations have been performed by using the TPI system and MATLAB,respectively,and both are in good agreement.The characteristics of THz waves and their interactions with the tooth samples are summarized.And the available THz-based technologies,such as TPI,and their potential applications of diagnoses are also presented.展开更多
The water content in vegetative leaves is an important indicator to plant science.It reveals the physiological status of plants and provides valuable information in irrigation management.Terahertz(THz)as a state-of-th...The water content in vegetative leaves is an important indicator to plant science.It reveals the physiological status of plants and provides valuable information in irrigation management.Terahertz(THz)as a state-of-the-art technology shows great potential in measuring and monitoring the water status in plant leaves.This paper reviewed the theoretical models for calculating water content in the plant leaves,the methods for eliminating the scattering loss caused by the surface roughness of leaf,the applications of THz spectroscopy and THz imaging for monitoring leaf water content and describing leaf water distribution.The survey of the researches presents the considerable advantages of this emerging and promising THz technology in agriculture.展开更多
We demonstrate two distinct emerging terahertz (THz) biomedical imaging techniques.One is based on the use of a new single frequency THz quantum cascade laser and the other is based on broadband THz time domain spec...We demonstrate two distinct emerging terahertz (THz) biomedical imaging techniques.One is based on the use of a new single frequency THz quantum cascade laser and the other is based on broadband THz time domain spectrocopy.The first method is employed to derive a metastasis lung tissue imaging at 3.7 THz with clear contrast between cancerous and healthy areas.The second approach is used to study an osseous tissue under several imaging modalities and achieve full THz spectroscopic imaging based on the frequency domain or on a fixed THz propagation time-delay.Sufficient contrast is achieved which facilitated the identification of regions with different cellular types and density compositions.展开更多
We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane us...We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.展开更多
Three-dimensional(3D)refractive index(RI)distribution is important to reveal the object’s inner structure.We implemented terahertz(THz)diffraction tomography with a continuous-wave single-frequency THz source for mea...Three-dimensional(3D)refractive index(RI)distribution is important to reveal the object’s inner structure.We implemented terahertz(THz)diffraction tomography with a continuous-wave single-frequency THz source for measuring 3D RI maps.The off-axis holographic interference configuration was employed to obtain the quantitative scattered field of the object under each rotation angle.The 3D reconstruction algorithm adopted the filtered backpropagation method,which can theoretically calculate the exact scattering potential from the measured scattered field.Based on the Rytov approximation,the 3D RI distribution of polystyrene foam spheres was achieved with high fidelity,which verified the feasibility of the proposed method.展开更多
文摘This paper is devoted to reviewing the results achieved so far in the application of the single-pixel imaging technique to terahertz(THz)systems.The use of THz radiation for imaging purposes has been largely explored in the last twenty years,due to the unique capabilities of this kind of radiation in interrogating material properties.However,THz imaging systems are still limited by the long acquisition time required to reconstruct the object image and significant efforts have been recently directed to overcome this drawback.One of the most promising approaches in this sense is the so-called“single-pixel”imaging,which in general enables image reconstruction by patterning the beam probing the object and measuring the total transmission(or reflection)with a single-pixel detector(i.e.,with no spatial resolution).The main advantages of such technique are that i)no bulky moving parts are required to raster-scan the object and ii)compressed sensing(CS)algorithms,which allow an appropriate reconstruction of the image with an incomplete set of measurements,can be successfully implemented.Overall,this can result in a reduction of the acquisition time.In this review,we cover the experimental solutions proposed to implement such imaging technique at THz frequencies,as well as some practical uses for typical THz applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61205101)the Shenzhen Municipal Research Foundation,China(Grant Nos.GJHZ201404171134305 and JCYJ20140417113130693)the Marie Curie Actions-International Research Staff Exchange Scheme(IRSES)(Grant No.FP7 PIRSES-2013-612267)
文摘Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length.The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content,and the measurement results show the consistence with the reported results,in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line(MDL).With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed.The two-term Debye relaxation model is employed to explain our experimental results,revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules.These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology.
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
文摘Terahertz(THz) imaging is progressing as a robust platform for myriad applications in the field of security,health,and material science.The THz regime,which comprises wavelengths spanning from microns to millimeters,is non-ionizing and has very low photon energy:Making it inherently safe for biological imaging.Colorectal cancer is one of the most common causes of death in the world,while the conventional screening and standard of care yet relies exclusively on the physician's experience.Researchers have been working on the development of a flexible THz endoscope,as a potential tool to aid in colorectal cancer screening.This involves building a single-channel THz endoscope,and profiling the THz response from colorectal tissue,and demonstrating endogenous contrast levels between normal and diseased tissue when imaging in reflection modality.The current level of contrast provided by the prototype THz endoscopic system represents a significant step towards clinical endoscopic application of THz technology for invivo colorectal cancer screening.The aim of this paper is to provide a short review of the recent advances in THz endoscopic technology and cancer imaging.In particular,the potential of single-channel THz endoscopic imaging for colonic cancer screening will be highlighted.
基金This study was funded by the National Natural Science Foundation of China(Grants No.61575003)the China Postdoctoral Science Foundation(Grants Nos.2015M580096 and 2017T100074).
文摘Real-time terahertz(THz)imaging offers remarkable application possibilities,especially in the security and medical fields.However,most THz detectors work with scanners,and a long image acquisition time is required.Some thermal detectors can achieve realtime imaging by using a focal plane array but have the drawbacks of low sensitivity due to a lack of suitable absorbing materials.In this study,we propose a novel photomechanical meta-molecule array by conveniently assembling THz meta-atom absorbers and bi-material cantilevers together,which can couple THz radiation to a mechanical deflection of the meta-molecules with high efficiency.By optically reading out the mechanical deflections of all of the meta-molecules simultaneously,real-time THz imaging can be achieved.A polyimide sacrificial layer technique was developed to fabricate the device on a glass wafer,which facilitates the transmission of a readout light while the THz wave radiates onto the meta-molecule array directly from the front side.THz images and video of various objects as well as infrared images of the human body were captured successfully with the fabricated metamolecule array.The proposed photomechanical device holds promise in applications in single and broadband THz as well as infrared imaging.
文摘Flat mirrors, also known as flat parabolic surfaces, for millimeter-wave and terahertz imaging systems are demonstrated. This flat mirror is based on the metasurface in which an inexpensive printed circuit board technology is used to realize copper patterns printed on an FR4 substrate. Compared to the conventional reflector antennas used today in diverse applications (for homeland security, medical systems, communication, etc.), the suggested mirror has major advantages in process simplicity, mechanical flexibility, frequency alignment, weight, and cost. The theoretical background, simulation results, experimental results, and proof of concept are given in this Letter.
基金supported by the National Natural Science Foundation of China(Nos.62227820,62004093,62035014,and 62288101)the Fundamental Research Funds for the Central Universitiesthe Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves。
文摘We simulate the measurements of an active bifocal terahertz imaging system to reproduce the ability of the system to detect the internal structure of foams having embedded defects.Angular spectrum theory and geometric optics tracing are used to calculate the incident and received electric fields of the system and the scattered light distribution of the measured object.The finite-element method is also used to calculate the scattering light distribution of the measured object for comparison with the geometric optics model.The simulations are consistent with the measurements at the central axis of the horizontal stripe defects.
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB755403 and 2014CB339802)the National Key Research and Development Program of China(Grant No.2016YFC0101001)+3 种基金the National Natural Science Foundation of China(Grant Nos.61775160,61771332,and 61471257)China Postdoctoral Science Foundation(Grant No.2016M602954)Postdoctoral Science Foundation of Chongqing,China(Grant No.Xm2016021)the Joint Incubation Project of Southwest Hospital,China(Grant Nos.SWH2016LHJC04 and SWH2016LHJC01)
文摘A compact terahertz(THz) imaging system based on complementary compressive sensing has been proposed using two single-pixel detectors. By using a mechanical spatial light modulator, sampling in the transmission and reflection orientations was achieved simultaneously, which allows imaging with negative mask values. The improvement of THz image quality and anti-noise performance has been verified experimentally compared with the traditional reconstructed image, and is in good agreement with the numerical simulation. The demonstrated imaging system, with the advantages of high imaging quality and strong anti-noise property, opens up possibilities for new applications in the THz region.
文摘In this article, two terahertz transmission imaging systems are built with a 2.52 THz continuous wave laser and two types of sensors. One is array scanning system using a 124×124 pyro-electric array camera as the detector; the other is a point-wise scanning system utilizing a Golay cell as the detector. The imaging speed and quality is briefly analyzed. Terahertz (THz) imaging results demonstrate that the array scanning system has higher imaging speed with lower resolution. The point-wise scanning system has higher imaging quality with lower speed.
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
文摘The analysis on the thickness of polyamide plate using Terahertz Time Domain System(THz-TDS)in reflection mode is carried out.The refractive index,one of the optical parameters in terahertz band,is solved through the mathematics model,and its value is 1.88.A kind of polyamide plate sample with four kinds of thickness is designed and the ability of THz-based method to detect defects or foreign bodies in fiber glass is verified by attaching metal plates to the back of fiberglass.By the comparison of traditional method and THz method,the terahertz method has a measurement error between 2.5%and 10%.As the thickness increases,the error tends to increase.The reason about the deviations is analyzed,as well as the systematic factors affecting the thickness measurement accuracy,in order to improve the accuracy of THz thickness measurement system and provide theoretical basis for designing terahertz thickness measurement system in the future.
基金the Research Fund for International Young Scientist Fund under Grant No.61750110520the Special Project for Guiding Local Science and Technology Development under Grant No.2018ZYYD006the Hubei Polytechnic University Laboratory Fund under Grant No.19XJK24R。
文摘Recently,the diagnoses of dental caries and other dental issues are in a queue as only X-ray-based techniques are available in most hospitals around the world.Terahertz(THz)parametric imaging(TPI)is the latest technology that can be applied for medical applications,especially dental caries.This technology is harmless and thus suitable for biological samples owing to the low energy of THz emission.In this paper,a developed TPI system is used to investigate the two-dimensional(2 D)and three-dimensional(3D)images of different samples from human teeth.After analyzing the measured images of human teeth,the results suggest that the THz parametric technology is capable of investigating the inner side structure of the teeth.This technique can be useful in detecting the defects in all types of human and animal teeth.The measurement and analytical calculations have been performed by using the TPI system and MATLAB,respectively,and both are in good agreement.The characteristics of THz waves and their interactions with the tooth samples are summarized.And the available THz-based technologies,such as TPI,and their potential applications of diagnoses are also presented.
基金This work was supported by the National Key Point Research and Invention Program of the Thirteenth(2016YFD0700304)the National Key Research&Development program of China(2016YFD0300606 and 2017YFD0700501).
文摘The water content in vegetative leaves is an important indicator to plant science.It reveals the physiological status of plants and provides valuable information in irrigation management.Terahertz(THz)as a state-of-the-art technology shows great potential in measuring and monitoring the water status in plant leaves.This paper reviewed the theoretical models for calculating water content in the plant leaves,the methods for eliminating the scattering loss caused by the surface roughness of leaf,the applications of THz spectroscopy and THz imaging for monitoring leaf water content and describing leaf water distribution.The survey of the researches presents the considerable advantages of this emerging and promising THz technology in agriculture.
基金supported by the National Science Foundation,USA
文摘We demonstrate two distinct emerging terahertz (THz) biomedical imaging techniques.One is based on the use of a new single frequency THz quantum cascade laser and the other is based on broadband THz time domain spectrocopy.The first method is employed to derive a metastasis lung tissue imaging at 3.7 THz with clear contrast between cancerous and healthy areas.The second approach is used to study an osseous tissue under several imaging modalities and achieve full THz spectroscopic imaging based on the frequency domain or on a fixed THz propagation time-delay.Sufficient contrast is achieved which facilitated the identification of regions with different cellular types and density compositions.
文摘We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.
基金supported by the National Natural Science Foundation of China(Nos.62075001 and 61675010)the Science Foundation of Education Commission of Beijing(No.KZ202010005008)the Beijing Nova Program(No.XX2018072)。
文摘Three-dimensional(3D)refractive index(RI)distribution is important to reveal the object’s inner structure.We implemented terahertz(THz)diffraction tomography with a continuous-wave single-frequency THz source for measuring 3D RI maps.The off-axis holographic interference configuration was employed to obtain the quantitative scattered field of the object under each rotation angle.The 3D reconstruction algorithm adopted the filtered backpropagation method,which can theoretically calculate the exact scattering potential from the measured scattered field.Based on the Rytov approximation,the 3D RI distribution of polystyrene foam spheres was achieved with high fidelity,which verified the feasibility of the proposed method.