A wide terahertz tuning range from 0.96 THz to 7.01 THz has been demonstrated based on ring-cavity THz wave parametric oscillator with a KTiOPO_(4)(KTP)crystal.The tuning range was observed intermittently from 0.96 TH...A wide terahertz tuning range from 0.96 THz to 7.01 THz has been demonstrated based on ring-cavity THz wave parametric oscillator with a KTiOPO_(4)(KTP)crystal.The tuning range was observed intermittently from 0.96 THz to 1.87 THz,from 3.04 THz to 3.33 THz,from 4.17 THz to 4.48 THz,from 4.78 THz to 4.97 THz,from 5.125 THz to 5.168 THz,from5.44 THz to 5.97 THz,and from 6.74 THz to 7.01 THz.The dual-Stokes wavelengths resonance phenomena were observed in some certain tuning angle ranges.Through the theoretical analysis of the dispersion curve of the KTP crystal,the intermittent THz wave tuning range and dual-wavelength Stokes waves operation during angle tuning process were explained.The theoretical analysis was in good agreement with the experiment results.The maximum THz output voltage detected by Golay cell was 1.7 V at 5.7 THz under the pump energy of 210 mJ,corresponding to the THz wave output energy of5.47μJ and conversion efficiency of 2.6×10^(-5).展开更多
Recent progresses made by authors on monochromatic and tunable terahertz (THz) generation based on nonlinear optics are reviewed, including THz parametric oscillation (TPO) and difference frequency generation (DF...Recent progresses made by authors on monochromatic and tunable terahertz (THz) generation based on nonlinear optics are reviewed, including THz parametric oscillation (TPO) and difference frequency generation (DFG). From the technical point of view, we develop extra- and intra-cavity surface-emitted TPO, as well as DFG with QPM-GaAs crystal. From the point of view of mechanism, Cherenkov phase-matching is comprehensively investigated in both bulk crystal and planar waveguide. A novel scheme for cascading enhanced Cherenkov DFG in waveguide is proposed. From the point of view of material, organic crystal 4-N,N-dimethylamino-4'-N'-methyl-stibazolium tosylate (DAST) is utilized as the nonlinear medium.展开更多
Studies on terahertz(THz)radiation and functiona devices have drawn increasing attention due to their applications in biological imaging and sensing nondestructive evaluation,national security,spectroscopy and high ...Studies on terahertz(THz)radiation and functiona devices have drawn increasing attention due to their applications in biological imaging and sensing nondestructive evaluation,national security,spectroscopy and high speed communication.Tunable THz sources based on difference frequency or parametric oscillation generation are highly efficient and reliable for these applications展开更多
High-power terahertz(THz) generation in the frequency range of 0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago, enabling new technological breakthroughs in ...High-power terahertz(THz) generation in the frequency range of 0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago, enabling new technological breakthroughs in spectroscopy, communication, imaging,etc. By using optical(laser) pumping methods with near-or mid-infrared(IR) lasers, flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology. This paper overviews various optically pumped THz sources, including femtosecond laser based ultrafast broadband THz generation, monochromatic widely tunable THz generation, single-mode on-chip THz source from photomixing, and the traditional powerful THz gas lasers. Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well. It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.展开更多
The prospects ofa p+nn+ cubic silicon carbide (3C-SiC/fl-SiC) based IMPATT diode as a potential solidstate terahertz source is studied for the first time through a modified generalized simulation scheme. The simul...The prospects ofa p+nn+ cubic silicon carbide (3C-SiC/fl-SiC) based IMPATT diode as a potential solidstate terahertz source is studied for the first time through a modified generalized simulation scheme. The simulation predicts that the device is capable of generating an RF power output of 63.0 W at 0.33 THz with an efficiency of 13%. The effects of parasitic series resistance on the device performance and exploitable RF power level are further simulated. The studies clearly establish the potential of 3C-SiC as a base semiconductor material for a high-power THz IMPATT device. Based on the simulation results, an attempt has been made to fabricate β-SiC based IMPATT devices in the THz region. Single crystalline, epitaxial 3C-SiC films are deposited on silicon (Si) (100) substrates by rapid thermal chemical vapour deposition (RTPCVD) at a temperature as low as 800 ℃ using a single precursor methylsilane, which contains Si and C atoms in the same molecule. No initial surface carbonization step is required in this method. A p-n junction with an n-type doping concentration of 4 × 10^24 m-3 (which is similar to the simulated design data) has been grown successfully and the characterization of the grown 3C-SiC film is reported in this paper. It is found that the inclusion of Ge improves the crystal quality and reduces the surface roughness.展开更多
In this work,the performance of Lg = 22 nm In(0.75)Ga(0.25)As channel-based high electron mobility transistor(HEMT) on InP substrate is compared with metamorphic high electron mobility transistor(MHEMT) on GaA...In this work,the performance of Lg = 22 nm In(0.75)Ga(0.25)As channel-based high electron mobility transistor(HEMT) on InP substrate is compared with metamorphic high electron mobility transistor(MHEMT) on GaAs substrate.The devices features heavily doped In(0.6)Ga(0.4)As source/drain(S/D) regions,Si double δ-doping planar sheets on either side of the In(0.75)Ga(0.25) As channel layer to enhance the transconductance,and buried Pt metal gate technology for reducing short channel effects.The TCAD simulation results show that the InP HEMT performance is superior to GaAs MHEMT in terms of fT,f(max) and transconductance(g(mmax)).The 22 nm InP HEMT shows an fT of 733 GHz and an f(max) of 1340 GHz where as in GaAs MHEMT it is 644 GHz and 924 GHz,respectively.InGaAs channel-based HEMTs on InP/GaAs substrates are suitable for future sub-millimeter and millimeter wave applications.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB755403 and 2014CB339802)the National Key Research and Development Program of China(Grant No.2016YFC0101001)+2 种基金the National Natural Science Foundation of China(Grant Nos.61775160,61771332,and 61471257)China Postdoctoral Science Foundation(Grant No.2016M602954)Postdoctoral Science Foundation of Chongqing,China(Grant No.Xm2016021)
文摘A wide terahertz tuning range from 0.96 THz to 7.01 THz has been demonstrated based on ring-cavity THz wave parametric oscillator with a KTiOPO_(4)(KTP)crystal.The tuning range was observed intermittently from 0.96 THz to 1.87 THz,from 3.04 THz to 3.33 THz,from 4.17 THz to 4.48 THz,from 4.78 THz to 4.97 THz,from 5.125 THz to 5.168 THz,from5.44 THz to 5.97 THz,and from 6.74 THz to 7.01 THz.The dual-Stokes wavelengths resonance phenomena were observed in some certain tuning angle ranges.Through the theoretical analysis of the dispersion curve of the KTP crystal,the intermittent THz wave tuning range and dual-wavelength Stokes waves operation during angle tuning process were explained.The theoretical analysis was in good agreement with the experiment results.The maximum THz output voltage detected by Golay cell was 1.7 V at 5.7 THz under the pump energy of 210 mJ,corresponding to the THz wave output energy of5.47μJ and conversion efficiency of 2.6×10^(-5).
基金supported by the National High Technology Research and Development Program of China(863)under Grant No.2011AA010205National Natural Science Foundation of China under Grant No.61172010 61101058,61107086,and 61275120+2 种基金the CAEP THz Science and Technology Foundation under Grant No.CAEPTHZ201201 and CAEPTHZ201304the Natural Science Foundation of Tianjin under Grant No.11JCYBJC01100 and 13ZCZDSF02300the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120032110053
文摘Recent progresses made by authors on monochromatic and tunable terahertz (THz) generation based on nonlinear optics are reviewed, including THz parametric oscillation (TPO) and difference frequency generation (DFG). From the technical point of view, we develop extra- and intra-cavity surface-emitted TPO, as well as DFG with QPM-GaAs crystal. From the point of view of mechanism, Cherenkov phase-matching is comprehensively investigated in both bulk crystal and planar waveguide. A novel scheme for cascading enhanced Cherenkov DFG in waveguide is proposed. From the point of view of material, organic crystal 4-N,N-dimethylamino-4'-N'-methyl-stibazolium tosylate (DAST) is utilized as the nonlinear medium.
文摘Studies on terahertz(THz)radiation and functiona devices have drawn increasing attention due to their applications in biological imaging and sensing nondestructive evaluation,national security,spectroscopy and high speed communication.Tunable THz sources based on difference frequency or parametric oscillation generation are highly efficient and reliable for these applications
基金supported by the National Basic Research Program of China(Grant No.2014CB339802)the National Natural Science Foundation of China(Grant Nos.61675146,61471257,61505089,61275102&61271066)
文摘High-power terahertz(THz) generation in the frequency range of 0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago, enabling new technological breakthroughs in spectroscopy, communication, imaging,etc. By using optical(laser) pumping methods with near-or mid-infrared(IR) lasers, flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology. This paper overviews various optically pumped THz sources, including femtosecond laser based ultrafast broadband THz generation, monochromatic widely tunable THz generation, single-mode on-chip THz source from photomixing, and the traditional powerful THz gas lasers. Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well. It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.
文摘The prospects ofa p+nn+ cubic silicon carbide (3C-SiC/fl-SiC) based IMPATT diode as a potential solidstate terahertz source is studied for the first time through a modified generalized simulation scheme. The simulation predicts that the device is capable of generating an RF power output of 63.0 W at 0.33 THz with an efficiency of 13%. The effects of parasitic series resistance on the device performance and exploitable RF power level are further simulated. The studies clearly establish the potential of 3C-SiC as a base semiconductor material for a high-power THz IMPATT device. Based on the simulation results, an attempt has been made to fabricate β-SiC based IMPATT devices in the THz region. Single crystalline, epitaxial 3C-SiC films are deposited on silicon (Si) (100) substrates by rapid thermal chemical vapour deposition (RTPCVD) at a temperature as low as 800 ℃ using a single precursor methylsilane, which contains Si and C atoms in the same molecule. No initial surface carbonization step is required in this method. A p-n junction with an n-type doping concentration of 4 × 10^24 m-3 (which is similar to the simulated design data) has been grown successfully and the characterization of the grown 3C-SiC film is reported in this paper. It is found that the inclusion of Ge improves the crystal quality and reduces the surface roughness.
文摘In this work,the performance of Lg = 22 nm In(0.75)Ga(0.25)As channel-based high electron mobility transistor(HEMT) on InP substrate is compared with metamorphic high electron mobility transistor(MHEMT) on GaAs substrate.The devices features heavily doped In(0.6)Ga(0.4)As source/drain(S/D) regions,Si double δ-doping planar sheets on either side of the In(0.75)Ga(0.25) As channel layer to enhance the transconductance,and buried Pt metal gate technology for reducing short channel effects.The TCAD simulation results show that the InP HEMT performance is superior to GaAs MHEMT in terms of fT,f(max) and transconductance(g(mmax)).The 22 nm InP HEMT shows an fT of 733 GHz and an f(max) of 1340 GHz where as in GaAs MHEMT it is 644 GHz and 924 GHz,respectively.InGaAs channel-based HEMTs on InP/GaAs substrates are suitable for future sub-millimeter and millimeter wave applications.