期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Term-Dependent Confidence Normalisation for Out-of-Vocabulary Spoken Term Detection 被引量:2
1
作者 Javier Tejedo Simon King Joe Frankel 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第2期358-375,共18页
An important component of a spoken term detection (STD) system involves estimating confidence measures of hypothesised detections.A potential problem of the widely used lattice-based confidence estimation,however,is... An important component of a spoken term detection (STD) system involves estimating confidence measures of hypothesised detections.A potential problem of the widely used lattice-based confidence estimation,however,is that the confidence scores are treated uniformly for all search terms,regardless of how much they may differ in terms of phonetic or linguistic properties.This problem is particularly evident for out-of-vocabulary (OOV) terms which tend to exhibit high intra-term diversity.To address the impact of term diversity on confidence measures,we propose in this work a term-dependent normalisation technique which compensates for term diversity in confidence estimation.We first derive an evaluation-metric-oriented normalisation that optimises the evaluation metric by compensating for the diverse occurrence rates among terms,and then propose a linear bias compensation and a discriminative compensation to deal with the bias problem that is inherent in lattice-based confidence measurement and from which the Term Specific Threshold (TST) approach suffers.We tested the proposed technique on speech data from the multi-party meeting domain with two state-ofthe-art STD systems based on phonemes and words respectively.The experimental results demonstrate that the confidence normalisation approach leads to a significant performance improvement in STD,particularly for OOV terms with phonemebased systems. 展开更多
关键词 confidence estimation discriminative model spoken term detection speech recognition
原文传递
SDN环境下基于CNN-BiLSTM的入侵检测研究
2
作者 韩炎龙 翟亚红 《佳木斯大学学报(自然科学版)》 CAS 2024年第3期16-20,52,共6页
软件定义网络(SDN)是一种将控制层和数据层分离的新型网络架构,在实现网络集中管理和可编程性的同时也面临易受到入侵攻击的问题。针对此问题设计了检测防御机制。利用深度学习算法,对数据集进行处理后,融合卷积神经网络(CNN)和双向长... 软件定义网络(SDN)是一种将控制层和数据层分离的新型网络架构,在实现网络集中管理和可编程性的同时也面临易受到入侵攻击的问题。针对此问题设计了检测防御机制。利用深度学习算法,对数据集进行处理后,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM),设计了CNN-BiLSTM模型检测攻击,利用SDN可编程性设计了防御机制,搭建基于SDN的网络平台进行仿真实验。实验结果表明,所设计方法相较传统检测方法可更准确检测出入侵流量,并在检测出后有效实现了防御功能。 展开更多
关键词 软件定义网络 深度学习 卷积神经网络 双向长短期记忆网络 入侵检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部