期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Roll-pitch-yaw autopilot design for nonlinear time-varying missile using partial state observer based global fast terminal sliding mode control 被引量:10
1
作者 Ahmed Awad Wang Haoping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1302-1312,共11页
The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vecto... The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vector, and nonlinear aerodynamics. Moreover, the autopilot should be designed for the entire flight envelope where fast variations exist. In this paper, a design of integrated roll-pitch-yaw autopilot based on global fast terminal sliding mode control (GFTSMC) with a partial state nonlinear observer (PSNLO) for STT nonlinear time-varying missile model, is employed to address these issues. GFTSMC with a novel sliding surface is proposed to nullify the integral error and the singularity problem without application of the sign function. The proposed autopilot consisting of two-loop structure, controls STT maneuver and stabilizes the rolling with a PSNLO in order to estimate the immeasurable states as an output while its inputs are missile measurable states and control signals. The missile model considers the velocity variation, gravity effect and parameters' variation. Furthermore, the environmental conditions' dynamics are mod- eled. PSNLO stability and the closed loop system stability are studied. Finally, numerical simulation is established to evaluate the proposed autopilot performance and to compare it with existing approaches in the literature. 展开更多
关键词 Flight control system Global fast terminal slidingmode control Integrated autopilot Nonlinear state observer Skid-to-turn missile
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部