The features of electromyographic (EMG) signals were investigated while people walking on different terrains, including up and down slopes, up and down stairs, and during level walking at different speeds, The featu...The features of electromyographic (EMG) signals were investigated while people walking on different terrains, including up and down slopes, up and down stairs, and during level walking at different speeds, The features were used to develop a terrain identification method. The technology can be used to develop an intelligent transfemoral prosthetic limb with terrain identification capability, The EMG signals from 8 hip muscles of 13 healthy persons were recorded as they walked on the different terrains. The signals from the sound side of a transfemoral amputee were also recorded. The features of these signals were obtained using data processing techniques with an identification process developed for the identification of the terrain type. The procedure was simplified by using only the signals from three muscles. The identification process worked well in an intelligent prosthetic knee in a laboratory setting.展开更多
基金Supported by the National Natural Science Foundation of China (No30170242) and the National High-Tech Research and Developmen(863) Program (No. 2001AA320601) of China
文摘The features of electromyographic (EMG) signals were investigated while people walking on different terrains, including up and down slopes, up and down stairs, and during level walking at different speeds, The features were used to develop a terrain identification method. The technology can be used to develop an intelligent transfemoral prosthetic limb with terrain identification capability, The EMG signals from 8 hip muscles of 13 healthy persons were recorded as they walked on the different terrains. The signals from the sound side of a transfemoral amputee were also recorded. The features of these signals were obtained using data processing techniques with an identification process developed for the identification of the terrain type. The procedure was simplified by using only the signals from three muscles. The identification process worked well in an intelligent prosthetic knee in a laboratory setting.