At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature poi...At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image.展开更多
The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar...The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.展开更多
基金This research was funded by College Student Innovation and Entrepreneurship Training Program,Grant Number 2021055Z and S202110082031the Special Project for Cultivating Scientific and Technological Innovation Ability of College and Middle School Students in Hebei Province,Grant Number 2021H011404.
文摘At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image.
基金Supported by the National Natural Science Foundation of China
文摘The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.