期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Estimating Soil Salinity in the Yellow River Delta, Eastern China——An Integrated Approach Using Spectral and Terrain Indices with the Generalized Additive Model 被引量:7
1
作者 SONG Chuangye REN Hongxu HUANG Chong 《Pedosphere》 SCIE CAS CSCD 2016年第5期626-635,共10页
Soil salinity is one of the most severe environmental problems worldwide. It is necessary to develop a soil-salinity-estimation model to project the spatial distribution of soil salinity. The aims of this study were t... Soil salinity is one of the most severe environmental problems worldwide. It is necessary to develop a soil-salinity-estimation model to project the spatial distribution of soil salinity. The aims of this study were to use remote sensed images and digital elevation model(DEM) to develop quantitative models for estimating soil salinity and to investigate the influence of vegetation on soil salinity estimation. Digital bands of Landsat Thematic Mapper(TM) images, vegetation indices, and terrain indices were selected as predictive variables for the estimation. The generalized additive model(GAM) was used to analyze the quantitative relationship between soil salt content, spectral properties, and terrain indices. Akaike's information criterion(AIC) was used to select relevant predictive variables for fitted GAMs. A correlation analysis and root mean square error between predicted and observed soil salt contents were used to validate the fitted GAMs. A high ratio of explained deviance suggests that an integrated approach using spectral and terrain indices with GAM was practical and efficient for estimating soil salinity. The performance of the fitted GAMs varied with changes in vegetation cover.Salinity in sparsely vegetated areas was estimated better than in densely vegetated areas. Visible red and near-infrared bands, and the second and third components of the tasseled cap transformation were the most important spectral variables for the estimation. Variable combinations in the fitted GAMs and their contribution varied with changes in vegetation cover. The contribution of terrain indices was smaller than that of spectral indices, possibly due to the low spatial resolution of DEM. This research may provide some beneficial references for regional soil salinity estimation. 展开更多
关键词 Akaike's information criterion digital elevation model Landsat TM image soil salt content terrain in indices vegetation cover
原文传递
Integrating Terrain and Vegetation Indices for Identifying Potential Soil Erosion Risk Area 被引量:4
2
作者 Arabinda Sharma 《Geo-Spatial Information Science》 2010年第3期201-209,共9页
The present paper offers an innovative method to monitor the change in soil erosion potential by integrating terrain and vegetation indices derived from remote sensing data. Three terrain indices namely, topographic w... The present paper offers an innovative method to monitor the change in soil erosion potential by integrating terrain and vegetation indices derived from remote sensing data. Three terrain indices namely, topographic wetness index (TWI), stream power index (SPI) and slope length factor (LS), were derived from the digital elevation model. Normalized vegetation index (NDVI) was derived for the year 1988 and 2004 using remote sensing images. K-mean clustering was performed on staked indices to categorize the study area into four soil erosion potential classes. The validation of derived erosion potential map using USLE model showed a good agreement. Results indicated that there was a significant change in the erosion potential of the watershed and a gradual shifting of lower erosion potential class to next higher erosion potential class over the study period. 展开更多
关键词 remote sensing GIS NDVI soil erosion terrain indices
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部