Dynamically adapt to uneven ground locomotion is a crucial ability for humanoid robots utilized in human environments.However,because of the effect of current pattern generation method,adapting to unknown rough ground...Dynamically adapt to uneven ground locomotion is a crucial ability for humanoid robots utilized in human environments.However,because of the effect of current pattern generation method,adapting to unknown rough ground is limited.Moreover,to maintain large support region by four-point contact during the landing phase is usually a key problem.In order to solve these problems,a landing phase control and online pattern generation in three dimensional environments is proposed.On the basis of robot-environment non-planar interactive modes,a method of landing control based on optimal support region is put forward to realize stable four-point contact by flexible foot,and a controller is employed to adapt to the changes of ground without using prior knowledge.Furthermore,an adaptable foothold planning is put forward to the online pattern generation considering walking speed,uneven terrain,and the effect of lateral movement to the locomotion stability.Finally,the effectiveness of landing control and online pattern generation is demonstrated by dynamic simulations and real robot walking experiments on outdoor uneven ground.The results indicate that the robot kept its balance even though the ground is unknown and irregular.The proposed methods lay a foundation for studies of humanoid robots performing tasks in complex environments.展开更多
For the concerted motion of rocker lunar rover, the pitch angle of rocker of a rocker lunar rover in uneven terrain must be calculated. According to the character of passive shape-shifting adaptive suspension of rocke...For the concerted motion of rocker lunar rover, the pitch angle of rocker of a rocker lunar rover in uneven terrain must be calculated. According to the character of passive shape-shifting adaptive suspension of rocker lunar rover, the model of rocker lunar rover and the model of terrain were both simplified. The pitch angle of rocker was calculated using forward solving, reverse solving and the method of offsetting the curve of terrain respectively. Because of the banishment of the nonlinearity of equation sets of calculation by reverse solving, the calculation of the pitch angle based on reverse solving was programmed by means of MATLAB. Simulations were carried out by means of ADAMS. The result verified the validity of the calculation based on reverse solving. It provides the theoretical foundation for motion planning and path planning of rocker lunar rover. As applications of the calculation of pitch angle of rocker, the multi-attribute decision making of path based on the concerted motion planning and the predictive control on lunar rover based on the Markov prediction model were introduced.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50775008)the PhD Programs Foundation of Ministry of Education of China (Grant No. 200800061019)Hubei provincial Digital Manufacturing Key Laboratory Foundation of China (Grant No.SZ0602)
文摘Dynamically adapt to uneven ground locomotion is a crucial ability for humanoid robots utilized in human environments.However,because of the effect of current pattern generation method,adapting to unknown rough ground is limited.Moreover,to maintain large support region by four-point contact during the landing phase is usually a key problem.In order to solve these problems,a landing phase control and online pattern generation in three dimensional environments is proposed.On the basis of robot-environment non-planar interactive modes,a method of landing control based on optimal support region is put forward to realize stable four-point contact by flexible foot,and a controller is employed to adapt to the changes of ground without using prior knowledge.Furthermore,an adaptable foothold planning is put forward to the online pattern generation considering walking speed,uneven terrain,and the effect of lateral movement to the locomotion stability.Finally,the effectiveness of landing control and online pattern generation is demonstrated by dynamic simulations and real robot walking experiments on outdoor uneven ground.The results indicate that the robot kept its balance even though the ground is unknown and irregular.The proposed methods lay a foundation for studies of humanoid robots performing tasks in complex environments.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50375032)the 111 Project (Grant No.B07018)
文摘For the concerted motion of rocker lunar rover, the pitch angle of rocker of a rocker lunar rover in uneven terrain must be calculated. According to the character of passive shape-shifting adaptive suspension of rocker lunar rover, the model of rocker lunar rover and the model of terrain were both simplified. The pitch angle of rocker was calculated using forward solving, reverse solving and the method of offsetting the curve of terrain respectively. Because of the banishment of the nonlinearity of equation sets of calculation by reverse solving, the calculation of the pitch angle based on reverse solving was programmed by means of MATLAB. Simulations were carried out by means of ADAMS. The result verified the validity of the calculation based on reverse solving. It provides the theoretical foundation for motion planning and path planning of rocker lunar rover. As applications of the calculation of pitch angle of rocker, the multi-attribute decision making of path based on the concerted motion planning and the predictive control on lunar rover based on the Markov prediction model were introduced.