期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Compressive Strength of Basic Magnesium Sulfate Cement Coral Aggregate Concrete(MCAC)on Non-Destructive Testing
1
作者 GUO Jianbo YU Hongfa +3 位作者 MA Haiyan CHANG Yun MEI Qiquan ZHANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1086-1095,共10页
Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultras... Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultrasonic pulse velocity(UPV)and the compressive strength(fcu)tests of 14 sets of cube specimens of the MCAC after 28 d of aging were conducted.The impact of the content and length of sisal fiber on the relationship between the fcu-RH and the fcu-UPV was determined.A mathematical model was established to predict the strength of the MCAC using the UPV,RH,and comprehensive UPV/RH methods and to obtain the curves of test strength.The applicability of the test strength curves of ordinary portland concrete(OPC),light-weight aggregate concrete(LAC),and coral aggregate concrete(CAC)to MCAC was assessed.The results showed that the test strength curves of OPC,LAC and CAC were inappropriate to determine the strength of MCAC using non-destructive method.The relative standard error of the curves of test strength of the RH method and the comprehensive method met the specifications,whereas that of the UPV method did not. 展开更多
关键词 non-destructive testing basic magnesium sulfate cement coral aggregate corcrete ultrasonic pulse velocity rebound hammer specific test strength curves
下载PDF
Experimental study on the shear behavior of the interface between cushion materials and the concrete raft 被引量:1
2
作者 Li Yaokun Han Xiaolei +1 位作者 Khaled Galal Ji Jing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期165-178,共14页
Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to q... Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to quantify such influences, horizontal shear tests on the interfaces between different cushion materials and concrete raft under monotonic and cyclic loading were carried out. The vertical pressure P_v, material type and cushion thickness h_c were taken as variables. Conclusions include: 1) under monotonic loading, P_v is the most significant factor; the shear resistance P_(hmax) increases as P_v increases, but the normalized factor of resistance μ_n has an opposite tendency; 2) for the materials used in this study, μ_n varies from 0.40 to 0.70, the interface friction angle δ_s varies from 20° to 35°, while u_(max) varies from 3 mm to 15 mm; 3) under cyclic loading, the interface behavior can be abstracted as a "three-segment" back-bone curve, the main parameters include μ_n, the displacement u_1 and stiffness K_1 of the elastic stage, the displacement u_2 and stiffness K_2 of the plastic stage; 4) by observation and statistical analysis, the significance of different factors, together with values of K_1, K_2 and μ_n have been obtained. 展开更多
关键词 cushion/raft interface shear behavior monotonic test cyclic test "three-segment" back-bone curve
下载PDF
Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data 被引量:8
3
作者 Wenting Luo Lin Li Kelvin C.P.Wang 《Journal of Traffic and Transportation Engineering(English Edition)》 2016年第2期137-145,共9页
Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditiona... Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis. 展开更多
关键词 Horizontal curve Inertial measurement unit (IMU) curve radius Kinematic method Geometry method Lateral acceleration method ANOVA test curve safety analysis
原文传递
Hysteretic model for bending-type frictional steel truss coupling beams
4
作者 Xin Yu Zhuoxin Wang +2 位作者 Yao Cui Tianjiao Wu Linlin Xie 《Resilient Cities and Structures》 2023年第1期18-27,共10页
As a novel coupling beam for coupled shear wall structures,the bending-type frictional steel truss coupling beam(BFTCB)concentrates the deformation and energy dissipation in friction dampers at the bottom chord,allowi... As a novel coupling beam for coupled shear wall structures,the bending-type frictional steel truss coupling beam(BFTCB)concentrates the deformation and energy dissipation in friction dampers at the bottom chord,allowing the main body to remain elastic during earthquakes.As the preparatory work for resilient structure design based on the BFTCB,this work concentrates on developing the hysteretic model for BFTCB.Firstly,the BFTCB stiffness-strength decoupling mechanism was introduced,i.e.,the shear strength is provided by friction dampers while webs control its initial stiffness.Secondly,a hysteretic model that reflects the BFTCB two-stage sliding characteristic was proposed.The model consists of a trilinear backbone curve and the unloading and reverse loading rules.The model has eight control parameters,of which two core parameters(initial stiffness and limiting shear strength)are derived from the BFTCB stiffness-strength decoupling mechanism,whereas the remaining parameters are obtained by theoretical analysis and empirical calibration.The hysteretic model was then compared with the test curves and demonstrated good accuracy.Finally,a series of FE prototypes of BFTCB with different design stiffnesses and strengths was adopted to verify the hysteretic model.The results showed that the proposed model fitted well with the FE prototypes,indicating its applicability to BFTCB with varying core design parameters.Therefore,the hysteretic model can be adopted for BFTCB to support the resilient shear wall structure design. 展开更多
关键词 Bending-type frictional steel truss coupling beam(BFTCB) Stiffness-strength decoupling mechanism Hysteretic test curve Two-stage sliding characteristic Hysteretic model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部