This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The h...This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.展开更多
The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-ty...The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-type rotor,both existing as magnetless topologies.Three-phase squirrel cage induction motors are frequently utilized in industrial drives because they are dependable,have high starting torque,are selfstarting and affordable.Single-phase induction motors,on the other hand,are commonly used for small loads such as domestic appliances in form of modest fans,pumps and electric power tools.In South Africa,there have been reports of fires and explosions resulting in live and property loss because of induction motors that have not been thoroughly tested or are incorrectly labelled in terms of ratings,electrical safety and performance.The goal of this study is targeted at preventing end-user injuries and failures caused by non-compliant induction motors,by evaluating locally manufactured/imported induction motors based on tests and evaluation from standards(IEC and SANS).The study is conducted using experimental procedures at the Explosion Prevention Technology and Rotating Machines(EPT and RM)laboratory,South African Bureau of Standards(SABS),South Africa.The main finding from the study shows differences in the nameplate characteristics of various induction motors which could have detrimental effects such as production and operational downtime in their end-use industries,at later stages.展开更多
Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT ...Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT rejection may rely on the position relation between the two signals. The criteria |△x|≤ 15 cm and |△y|≤12 cm are currently proposed for a rejection rate higher than 90%. For signals coming from distanced bars, the energy conservation relationship can be applied to reject the CT events with a similar performance. In both cases the results of simulation agree very well with the experimental data, assuring their applicability to other detection systems and physics problems.展开更多
The aim of this work is to analyze the performance of a commercial micro gas turbine, focusing on the analysis of the fuel consumption and the outlet compressor and turbine temperature at various rpm, and to evaluate ...The aim of this work is to analyze the performance of a commercial micro gas turbine, focusing on the analysis of the fuel consumption and the outlet compressor and turbine temperature at various rpm, and to evaluate and compare the efficiency of the device. A test bench has been assembled with the available equipment in the laboratory of the department of mechanical and aerospace engineering in Roma. By using the software supplied by the manufacturer, the evaluation of the operating performance of the device at different speeds has been performed, obtaining all the values of interest.展开更多
The possibility of using 209Bi as a new threshold detector to measurc high-energy neutrons was investigated for the first time. At the same time the experiment measured successfully the emitted neutron fiuence rate, e...The possibility of using 209Bi as a new threshold detector to measurc high-energy neutrons was investigated for the first time. At the same time the experiment measured successfully the emitted neutron fiuence rate, energy spectrum and dose equivalent rate distributions in the heavy ion target area using a detector complex including 209Bi, 115In, 27A1, 19F and 12C samples.展开更多
Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenie...Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models.展开更多
基金supported by the National Natural Sci-ence Foundation of China(Nos.52201345,and 52001293)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.
基金supported in part by Explosion Prevention Technology and Rotating Machines(EPT&RM)laboratory,South African Bureau of Standards(SABS),Pretoria,South Africa.
文摘The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-type rotor,both existing as magnetless topologies.Three-phase squirrel cage induction motors are frequently utilized in industrial drives because they are dependable,have high starting torque,are selfstarting and affordable.Single-phase induction motors,on the other hand,are commonly used for small loads such as domestic appliances in form of modest fans,pumps and electric power tools.In South Africa,there have been reports of fires and explosions resulting in live and property loss because of induction motors that have not been thoroughly tested or are incorrectly labelled in terms of ratings,electrical safety and performance.The goal of this study is targeted at preventing end-user injuries and failures caused by non-compliant induction motors,by evaluating locally manufactured/imported induction motors based on tests and evaluation from standards(IEC and SANS).The study is conducted using experimental procedures at the Explosion Prevention Technology and Rotating Machines(EPT and RM)laboratory,South African Bureau of Standards(SABS),South Africa.The main finding from the study shows differences in the nameplate characteristics of various induction motors which could have detrimental effects such as production and operational downtime in their end-use industries,at later stages.
基金supported by the National Basic Research Program of China (No. 2007CB815002)the Fundamental Research Funds for the Central Universities of China (HEUCF101501)Harbin Engineering University of China (002150260713)
文摘Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT rejection may rely on the position relation between the two signals. The criteria |△x|≤ 15 cm and |△y|≤12 cm are currently proposed for a rejection rate higher than 90%. For signals coming from distanced bars, the energy conservation relationship can be applied to reject the CT events with a similar performance. In both cases the results of simulation agree very well with the experimental data, assuring their applicability to other detection systems and physics problems.
文摘The aim of this work is to analyze the performance of a commercial micro gas turbine, focusing on the analysis of the fuel consumption and the outlet compressor and turbine temperature at various rpm, and to evaluate and compare the efficiency of the device. A test bench has been assembled with the available equipment in the laboratory of the department of mechanical and aerospace engineering in Roma. By using the software supplied by the manufacturer, the evaluation of the operating performance of the device at different speeds has been performed, obtaining all the values of interest.
基金Supported by the National Natural Science Foundation of China(19875070)
文摘The possibility of using 209Bi as a new threshold detector to measurc high-energy neutrons was investigated for the first time. At the same time the experiment measured successfully the emitted neutron fiuence rate, energy spectrum and dose equivalent rate distributions in the heavy ion target area using a detector complex including 209Bi, 115In, 27A1, 19F and 12C samples.
文摘Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models.