期刊文献+
共找到772篇文章
< 1 2 39 >
每页显示 20 50 100
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
1
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection large-scale model test
下载PDF
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
2
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability physical model test Surface 3D deformation Stability identification
下载PDF
Physical model test and application of 3D printing rock-like specimens to laminated rock tunnels
3
作者 Yun Tian Weizhong Chen +3 位作者 Hongming Tian Xiaoyun Shu Linkai He Man Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4625-4637,共13页
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t... Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks. 展开更多
关键词 Bedding plane Three-dimensional(3D)printing physical model test Non-uniform deformation Digital imaging correlation(DIC)
下载PDF
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
4
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 large-scale standing rotary cutting test Discrete element method(DEM)simulation Cutter-rock interaction Improved CSM(Colorado School of Mines) model Cutting force
下载PDF
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:14
5
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 Failure mechanism physical model test 3DEC Layered soft rocks Large deformation
下载PDF
Displacement characteristic of landslides reinforced with flexible piles: field and physical model test 被引量:3
6
作者 ZHOU Chang HU Xin-li +2 位作者 ZHENG Wen-bo XU Chu WANG Qiang 《Journal of Mountain Science》 SCIE CSCD 2020年第4期787-800,共14页
A field monitoring system was established in an active river bank landslide in the Three Gorges area, China, and a consecutive monitoring for about 5 years were conducted to understand the displacement characteristics... A field monitoring system was established in an active river bank landslide in the Three Gorges area, China, and a consecutive monitoring for about 5 years were conducted to understand the displacement characteristics of flexible piles and the surrounding soil. It was found that piles deformed elastically under reservoir operation, and the soil in front of piles was gradually separated from piles. The movement of the pile heads exceeded that of the soil between and behind piles. This phenomenon was further studied by a large-scale physical model test to gain insights into the pile-soil interaction. The displacement relationship between pile heads and the surrounding soil is in good agreement with the field data. The physical model test shows that the deformation process of pile-reinforced landslides can be divided into two stages: firstly, when the piles head movement exceeds soil movement, the soil arching is mainly affected by the deflection of the piles, the arches between and behind piles bent upwards;but when the soil movement exceeds piles head movement, the arches near the upslope and downslope bent downwards and upwards, respectively. Furthermore, the different deformation of two adjacent piles and the pile stiffness influenced the arch’s shape and formation;the flexible piles exhibit great coordinated deformation with the landslide, and caused the soil arch on the downslope. 展开更多
关键词 PILE-SOIL interaction FIELD TRAIL physical model test Soil ARCHING DISPLACEMENT characteristics Three Gorges Reservior
下载PDF
Stability analyses of vertically exposed cemented backfill:A revisit to Mitchell's physical model tests 被引量:13
7
作者 Liu Guangsheng Li Li +1 位作者 Yang Xiaocong Guo Lijie 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1135-1144,共10页
Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfi... Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfill. Physical model tests were performed. Good agreements were obtained between the required strengths predicted by the analytical solution and experimental results. However, it is well-known that zero friction angle can only be possible in terms of total stresses when geomaterials are submitted to unconsolidated and undrained conditions. A revisit to Mitchell's physical model tests reveals that both the laboratory tests performed for obtaining the shear strength parameters of the cemented backfill and the box stability tests were conducted under a condition close to undrained condition. This explains well the good agreement between Mitchell's solution and experimental results. Good agreements are equally obtained between Mitchell's experimental results and FLAC3 D numerical modeling of shortterm stability analyses of exposed cemented backfill. 展开更多
关键词 Cemented backfill Required strength Mitchell physical model tests Numerical modeling FLAC3D
下载PDF
TENSILE TEST AND PHYSICAL MODEL OF NiTi SHAPE MEMORY ALLOY 被引量:1
8
作者 HUZi-li WANGXin-wei XIONGKe 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第4期267-271,共5页
The tensile stress-strain curves of NiTi wires are obtained by tensile experiments under different heat treatments. A phenomenological physical model based on hysteresis element method is developed to describe the exp... The tensile stress-strain curves of NiTi wires are obtained by tensile experiments under different heat treatments. A phenomenological physical model based on hysteresis element method is developed to describe the experimentally determined stress-strain curves of shape memory alloy (SMA) wires. Numerical simulations are made. Simulation results show that:(1) a series of unusual changes on physical and mechanical properties of SMA wires occur when martensitic, especially R (rhombohedral) phase transformation emerge. The stress-strain relation of SMA wires is highly non-linear; (2) there are no notable yielding phenomena before NiTi wires are broken; (3) numerical results obtained by the physical model are in good agreement with experimental data. 展开更多
关键词 SMA tensile test physical model numerical simulation constitutive relation
下载PDF
Rating Curve Modification at Low Discharges Using Physical Model Tests
9
作者 Shun-Chung Tsung Jihn-Sung Lai +1 位作者 Yun-Ling Chen Hau-Wei Wang 《World Journal of Engineering and Technology》 2015年第2期50-56,共7页
Hydraulic structure is designed based on hydraulic theories or guidelines. To ensure performance, physical model tests are often used at high discharges. However, high discharge in river is rare. Physical model tests ... Hydraulic structure is designed based on hydraulic theories or guidelines. To ensure performance, physical model tests are often used at high discharges. However, high discharge in river is rare. Physical model tests at high discharges will probably lead biased hydrological relationship. To improve hydrological relationship at low discharges, in this study, we considered the diversion rating curve of the Yuanshanzi Diversion Work. The 1/100-scaled physical model tests at low and high discharges (90 - 1620 m3/s) were performed and coupled the diversion discharges of 5 flood events (2009-2010) in field. The official diversion rating curve was built only based on physical model tests at high discharges (837 - 1620 m3/s). The results of physical model tests in this study suggested the official diversion rating curve should be modified considering all tests. The modifications showed the official diversion rating curve was over-estimated. A complete series of physical model tests and considering field situations, in this study, indicated expanded physical model tests and constantly field measurements were therefore necessary for hydraulic structure, which provided information to modify used hydrological relationship to fit real situations. 展开更多
关键词 physical model test Yuanshanzi DIVERSION WORK RATING CURVE
下载PDF
Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes 被引量:2
10
作者 Qinghai Ma Guangsheng Liu +1 位作者 Xiaocong Yang Lijie Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1490-1501,共12页
Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requi... Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation. 展开更多
关键词 tailings backfill CONSOLIDATION slurry drainage cement content physical model test
下载PDF
Study on Physical Models of In-Seam Seismic Wave
11
作者 王文德 李锦飞 《International Journal of Mining Science and Technology》 SCIE EI 1998年第1期10-14,共5页
The propagation laws of in-seam seismic wave in coal seam in differeut situations are studied by means of in-seam seismic simulatiou tests. Some valuable conclusions are obtained, which are signiricant in guiding in-s... The propagation laws of in-seam seismic wave in coal seam in differeut situations are studied by means of in-seam seismic simulatiou tests. Some valuable conclusions are obtained, which are signiricant in guiding in-seam seismic prospecting in the future. 展开更多
关键词 in-seam SEISMIC WAVE propagation LAW physical model simulation test
下载PDF
Establishment and application of the anisotropic shale-rock physical model in the observation coordinate system
12
作者 Gui Jun-Chuan Sang Yu +5 位作者 Guo Jian-Chun Zeng Bo Song Yi Huang Hao-Yong Xu Er-si Chen Ya-xi 《Applied Geophysics》 SCIE CSCD 2022年第3期325-342,470,共19页
No shale-rock physical model has been established in the observation coordinate system.To this end,this paper carried out anisotropic wave velocity tests on shale rock and compared the Thomsen,Daley,and Berryman solut... No shale-rock physical model has been established in the observation coordinate system.To this end,this paper carried out anisotropic wave velocity tests on shale rock and compared the Thomsen,Daley,and Berryman solutions to characterize anisotropic acoustic wave velocity.Finally,the Daley solution was selected.Based on basic rock physical models,such as SCA and DEM methods,and combined with the Daley solution,an anisotropic shale-rock physical model was established in the observation coordinate system and applied in Well B1 in the Luzhou area,Sichuan Basin.Our research conclusions were as follows:1.for the samples from the same core,the P-wave velocities in three directions were in the order VP11>VP45>VP33,shear wave velocity VS11 was the largest,but VS33 and VS45 did not follow the law of Vs33>Vs45 for some samples;2.the Daley solution,which not only considers the accuracy requirements but also has a complete expression of P-,SV-,and SH-waves,is most suitable for characterization of anisotropic wave velocity in this study area;3.the rock physical model constructed in the observation coordinate system has high accuracy,in which the absolute value of the relative error of the P-wave slowness was between 0%and 5.05%(0.55%on average),and that of shear-wave slowness was between 0%and 6.05%(0.59%on average);4.the acoustic waves recorded in Well B1 in the observation coordinate system were very different from those in the constitutive coordinate system.The relative difference of the P-wave was between 6.76%and 30.84%(14.68%on average),and that of the S-wave was between 7.00%and 23.44%(13.99%on average).The acoustic slowness measured in the observation coordinate system,such as in a deviated well or a horizontal well section,must be converted to the constitutive coordinate system before it can be used in subsequent engineering applications;5.the anisotropic shale-rock physical model built in the observation coordinate system proposed in this paper can provide basic data and guidance for subsequent pore pressure prediction,geomechanical modeling,and fracturing stimulation design for deviated and horizontal wells. 展开更多
关键词 shale anisotropy wave velocity test observation coordinate system constitutive coordinate system rock physical model
下载PDF
Hydrodynamic Performance of a Newly-Designed Pelagic and Demersal Trawls Using Physical Modeling and Analytical Methods for Cameroonian Industrial Fisheries
13
作者 Tcham Leopold Vanlie Maurice Kontchou +2 位作者 Nyatchouba Nsangue Bruno Thierry Abdou Njifenjou Njomoue Pandong Achille 《Open Journal of Marine Science》 2023年第3期41-65,共25页
This study proposed the newly-designed Pelagic and demersal trawls for the fishing vessels operating in Cameroonian waters in pelagic and demersal fishing grounds. The engineering performances of both trawls were inve... This study proposed the newly-designed Pelagic and demersal trawls for the fishing vessels operating in Cameroonian waters in pelagic and demersal fishing grounds. The engineering performances of both trawls were investigated using physical modelling method and analytical method based on the predicted equations. In a flume tank, a series of physical model tests based on Tauti’s law were performed to investigate the hydrodynamic and geometrical performances of both trawls and to assess the applicability of the analytical methods based on predicted equations. The results showed that in model scale, the working towing speed and door spread for the pelagic trawl were 3.5 knots and 1.85 m, respectively, and for the bottom trawl net they were 4.0 knots and 1.8 m. At that speed and door spread, the drag force, net opening height, and wing-end spread of the pelagic model trawl were 36.73 N, 0.89 m, and 0.86 m, respectively, and the swept area was 0.76 m<sup>2</sup>. Bottom trawl speed and door spread were 30.43 N, 0.38 m, and 0.45 m, respectively, and the swept area was 0.25 m<sup>2</sup>. The maximum difference between the experimental and analytical results of hydrodynamic performances was less than 56.22% and 41.45%, respectively, for pelagic and bottom trawls, the results of the geometrical performances obtained using predicted equations were close to the experimental results in the flume tank with a maximum relative error less than 12.85%. The newly developed pelagic and bottom trawls had advanced engineering performance for high catch efficiency and selectivity and could be used in commercial fishing operations in Cameroonian waters. 展开更多
关键词 Cameroonian Waters Pelagic Trawl Bottom Trawl Engineering Performances physical model test Analytical Methods Formatting
下载PDF
Model test of the influence of cyclic water level fluctuations on a landslide 被引量:6
14
作者 HE Chun-can HU Xin-li +3 位作者 XU Chu WU Shuang-shuang ZHANG Han LIU Chang 《Journal of Mountain Science》 SCIE CSCD 2020年第1期191-202,共12页
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge... Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well. 展开更多
关键词 Reservoir landslide Cyclic water level fluctuations physical model test Landslide soil loss Adaptive ability
下载PDF
Failure mechanism of a large-scale composite deposits caused by the water level increases
15
作者 ZHANG Xin TU Guo-xiang +3 位作者 LUO Qi-feng TANG Hao ZHANG Yu-lin LI An-run 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1369-1384,共16页
The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the L... The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the Lancang River in Southwest China as a study case,the origin of the deposits was analyzed based on the field investigation and a multi-material model was established in the physical model test.Combined with numerical simulation,the failure mechanism of the composite deposits during reservoir water level variations was studied.The results indicate that the deformation of the large-scale composite deposits is a staged sliding mode during the impoundment process.The first slip deformation is greatly affected by the buoyancy weight-reducing effect,and the permeability of soil and variation in the water level are the factors controlling slope deformation initiation.The high water sensitivity and low permeability of fine grained soil play an important role in the re-deformation of deposits slope.During the impoundment process,the deformation trend of the deposit slope is decreasing,and vertical consolidation of soil and increasing hydrostatic pressure on the slope surface are the main reasons for deformation attenuation.It is considered that the probability of large-scale sliding of the deposits during the impoundment period is low.But the damage caused by local bank collapse of the deposit slope still needs attention.The results of this paper will further improve our understanding of the failure mechanism of composite deposits caused by water level increases and provide guidance for the construction of hydropower stations. 展开更多
关键词 Composite deposits Reservoir water level rise physical model test Finite-differencemethod Failure mechanism
下载PDF
The Reliability and Validity of Toe Grip Strength as an Index of Physical Development in 4- to 5-Year-Old Children
16
作者 Takahiro Ikeda Osamu Aoyagi 《Journal of Sports Science》 2015年第1期22-28,共7页
Studies on TGS (toe-grip strength) are currently proliferating as a result of the development of the dynamometer. The purpose of the present study was to investigate the reliability and validity of TGS as a physical... Studies on TGS (toe-grip strength) are currently proliferating as a result of the development of the dynamometer. The purpose of the present study was to investigate the reliability and validity of TGS as a physical function in preschool aged children. The participants were 153 preschoolers. Each participant was measured in terms of his or her TGS and completed a MAT (motor ability test). The reliability of the measurements was investigated via Pearson's r and Cronbach's a through a test-retest method, as well as a Bland-Altman plot. The validity of the TGS value was investigated by measuring the correlation between TGS and each component of the MAT, the principal component analysis, and a two-way layout ANOVA with general linear model (gender and age). All reliability coefficients were more than 0.70. Though all components of the MAT relating to TGS were found to be significant (P 〈 0.05), these correlations were weak. However, TGS was found to be a physical function that relating to the lower limbs and develops with aging. Therefore, TGS was found to be a highly reliable measure of physical function performance in preschoolers. 展开更多
关键词 General linear model ITEM analysis MOTOR ABILITY test physical function preschooler.
下载PDF
RCS SCALE-MODEL-TESTING METHOD BY VARIANCE IN THE SIZE FOR SIMPLY SHAPED SCATTERERS
17
作者 刘宏伟 时振栋 唐璞 《Journal of Electronics(China)》 1995年第2期177-180,共4页
t According to a general representation of physical scale factor of RCS for variance in the size of simply shaped scatterers, a novel RCS model-testing method is described. The computed results of the prototype scatte... t According to a general representation of physical scale factor of RCS for variance in the size of simply shaped scatterers, a novel RCS model-testing method is described. The computed results of the prototype scatterers by this method from the model-testing agree well with their measured values both for two kinds of simply shaped scatterers, cylinders and ladder-shaped plates. 展开更多
关键词 Radar-cross-section(RCS) model-testing Scale factor physical-optic approximation
下载PDF
AN IMPROVED PTV SYSTEM FOR LARGE-SCALE PHYSICAL RIVER MODEL 被引量:10
18
作者 TANG Hong-wu CHEN Cheng CHEN Hong HUANG Jian-tong 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第6期669-678,共10页
To measure the surface flow in a physical river model, an improved system of Large-Scale Particle Tracking Velocimetry (LSPTV) was proposed and the elements of the PTV system were described. Usually the tracer parti... To measure the surface flow in a physical river model, an improved system of Large-Scale Particle Tracking Velocimetry (LSPTV) was proposed and the elements of the PTV system were described. Usually the tracer particles of a PTV system seeded on water surface tend to form conglomerates due to surface tension of water. In addition, they can not float on water surface when water flow is shallow. Ellipsoid particles were used to avoid the above problems. Another important issue is particle recognition. In order to eliminate the influence of noise, particles were recognized by the processing of multi-frame images. The kernel of the improved PTV system is the algorithm for particle tracking. A new 3-frame PTV algorithm was developed. The performance of this algorithm was compared with the conventional 4-frame PTV algorithm and 2-frame PTV algorithm by means of computer simulation using synthetically generated images. The results show that the new 3-frame PTV algorithm can recover more velocity vectors and have lower relative error. In addition, in order to attain the whole flow field from individual flow fields, the method of stitching individual flow fields by obvious marks was worked out. Then the improved PTV system was applied to the measurement of surface flow field in Model Yellow River and shows good performance. 展开更多
关键词 large-scale Particle Tracking Velocimetry (LSPTV) PARTICLE 3-frame PTV physical fiver model
原文传递
Physical Model Test on the Behavior of Large Slurry Shield-Driving Tunnel in Soft Clay 被引量:4
19
作者 胡欣雨 张子新 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第6期693-698,共6页
As the dimension of the slurry shield is greatly increasing, more and more attention is paid to the face stability of slurry shield-driven tunnel in recently years. A reduced-scale slurry shield model test is carried ... As the dimension of the slurry shield is greatly increasing, more and more attention is paid to the face stability of slurry shield-driven tunnel in recently years. A reduced-scale slurry shield model test is carried out based on the background of Qianjiang River Tunnel and Shanghai Yangtze River Tunnel. The results of the model test are presented in this paper with particular emphasis on the slurry shield driving parameters and the critical slurry pressure of the excavating face. It is shown that the behavior of large slurry shield-driving induced by the cutting face is mostly decided by the fluctuation of the slurry pressure in the chamber, and a smaller slurry pressure fluctuation range is presented according to the results of the physical model test. Especially, it is more difcult to control the machine in sandy silt than that in soft clay and muddy clay. The chamber pressure will fluctuate greatly when excavating in high permeability ground, and the gradient of accumulation of the flux diference could be used to evaluate the face balance of the slurry shield excavation. 展开更多
关键词 SLURRY PRESSURE BALANCED method physical model test SLURRY PRESSURE TUNNEL
原文传递
A Simplified Nonlinear Model of Vertical Vortex-Induced Force on Box Decks for Predicting Stable Amplitudes of Vortex-Induced Vibrations 被引量:8
20
作者 Le-Dong Zhu Xiao-Liang Meng +1 位作者 Lin-Qing Du Ming-Chang Ding 《Engineering》 SCIE EI 2017年第6期854-862,共9页
Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on t... Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy. 展开更多
关键词 Box deck of bridge Vertical vortex-induced vibration Vertical vortex-induced force Simplified nonlinear model Wind-tunnel test large-scale sectional model Synchronous measurement of force and vibration
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部