The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undraine...The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undrained pulling sphere tests were carried out and the train loads were simulated through localized and cyclic vibration at various frequencies.Laboratory testing results indicate that the fl ow characteristics of soft soil can be signifi cantly enhanced by high-frequency vibration;meanwhile the continuous increase in fl ow characteristics caused by cyclic vibration may be an important reason for the long-term settlement of soft subsoil.The infl uence of sand content on fl ow characteristics is also studied in detail,and it is shown that the addition of coarse sand can weaken the fl ow characteristics of soft soil induced by sudden vibration at lower than 50 Hz.Under the condition of cyclic vibration,the growth of the fl ow characteristics of sand-clay mixtures is mainly caused by the fi rst-time vibration in the cycle,and the increase in sand content can make the fl ow characteristics present a faster convergent tendency.展开更多
Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abu...Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column.展开更多
The existing studies have primarily focused on the effect of cyclic load characteristics(namely,cyclic load ratio and amplitude ratio)on cyclic lateral response of monopiles in sand,with little attention paid to the e...The existing studies have primarily focused on the effect of cyclic load characteristics(namely,cyclic load ratio and amplitude ratio)on cyclic lateral response of monopiles in sand,with little attention paid to the effect of pile−soil relative stiffness(K_(R)).This paper presents a series of 1-g cyclic tests aimed at improving understanding of the cyclic lateral responses of monopiles under different pile−soil systems.These systems are arranged by two model piles with different stiffness,including four different slenderness ratios(pile embedded length,L,normalized by diameter,D)under medium dense sand.The K_(R)-values are calculated by a previously proposed method considering the real soil stress level.The test results show that the lateral accumulation displacement increases significantly with the increment of the K_(R)-value,while the cyclic secant stiffness performs inversely.The maximum pile bending moment increases with the cycle number for the rigid pile−soil system,but shows a decreasing trend in the flexible system.For an uppermost concern,an empirical model is proposed to predict the accumulated displacement of arbitrary pile−soil systems by combining the results from this study with those from previous experimental investigations.The validity of the proposed model is demonstrated by 1-g and centrifuge tests.展开更多
This paper aims at widespread presence of expansive soil which can be obtained in the project from Xiaoxita to Yaqueling first-class highway rebuilding engineering in Yichang City of Hubei Province and weathered sand ...This paper aims at widespread presence of expansive soil which can be obtained in the project from Xiaoxita to Yaqueling first-class highway rebuilding engineering in Yichang City of Hubei Province and weathered sand which can be made full use locally,many experiments have been made. Compaction experiments and expansibility index indoor experiments of undisturbed expansive soil and expansive soil mixed with sand ranging from 10 % to 50 % have been made. Through the test mixing undisturbed expansive soil with different content of weathered sand,it can change the expansive soil water characteristics and compaction characteristics. It can influence the expansibility of the expansive soil index and significantly inhibit the expansibility of the expansive soil and reach the standard of roadbed filler.展开更多
In this paper, through the indoor free load swelling rate test, expansive soil in a section of a first- class highway reconstruction project in Yichang City was studied. It emphatically analyzed the interrelations amo...In this paper, through the indoor free load swelling rate test, expansive soil in a section of a first- class highway reconstruction project in Yichang City was studied. It emphatically analyzed the interrelations among free load swelling rate, non-load time, the proportion of mixed sand and initial dry density. Experimen- tal studies have shown that: Free load swelling deformation is mainly divided into three stages of rapid expan- sion, slow expansion and final stability; when the initial dry density is constant, free load swelling rate of the weathered sand modified soil will reduce rapidly before they slow down with the increase of sand proportion, and weathered sand modified soil free load swelling rate is not sensitive to the large amount of sand mixed; in the same mixed sand ratio, weathered sand modified soil free load swelling rate increases rapidly with the in- crease of initial dry density, there is a good linear correlation between them. To take appropriate control of the initial dry density during the expansive soil subgrade construction helps to reduce its swelling deformation and ensures the stability of the embankment.展开更多
Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil...Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.展开更多
This paper presents the results of laboratory test on the feasibility of soil conditioning for earth pressurebalance (EPB) excavation in a tar sand, which is a natural material never studied in this respect. Thelabo...This paper presents the results of laboratory test on the feasibility of soil conditioning for earth pressurebalance (EPB) excavation in a tar sand, which is a natural material never studied in this respect. Thelaboratory test performed is based on a procedure and methods used in previous studies with differenttypes of soils, but for this special complex material, additional tests are also conducted to verify particularproperties of the tar sands, such as the tilt test and vane shear test usually used in cohesive materials, anda direct shear test. The laboratory test proves that the test procedure is applicable also to this type of soiland the conditioned material can be considered suitable for EPB excavations, although it is necessary touse a certain percentage of fine elements (filler) to create a material suitable to be mixed with foam. Thetest results show that the conditioned material fulfils the required standard for an EPB application.展开更多
A novel horizontal trap-door test system was devised in this study to analyze the face stability of shield tunnels in sands.The test system can be used to investigate both the longitudinal and cross sections of the fa...A novel horizontal trap-door test system was devised in this study to analyze the face stability of shield tunnels in sands.The test system can be used to investigate both the longitudinal and cross sections of the face failure simultaneously at one single apparatus and was employed to perform face stability tests on small-scaled tunnel models at single gravity.The lateral support pressures and failure zones were studied with varying sand materials and earth covers.The results demonstrate that the tunnel face moves back,the lateral active earth pressure on the tunnel face decreases rapidly to a residual value,and the lateral pressure distribution can be categorized into three stages during the failure process:1)initial state;2)pressure dissipation stage;and 3)pressure zone diminution stage.Furthermore,face failure firstly develops from a stable condition to the local failure state,and then continues to develop to the global failure state that can be divided into two sub-zones with different failure mechanisms:rotational failure zone(lower zone)and gravitational failure zone(upper zone).Further discussion shows that under the effects of soil arching,the shape of the gravitational failure zone can adopt arch shaped(most frequent)and column shaped(in shallow tunnels).Limit support pressure for face stability usually appears atδ/D=0.2%−0.5%(ratio of face displacement to tunnel diameter).展开更多
This paper presents a generalized dilatancy angle equation of granular soil to cover not only the drained tests but also the undrained tests by introducing a generalized structure of soil:soil skeleton formed by soil ...This paper presents a generalized dilatancy angle equation of granular soil to cover not only the drained tests but also the undrained tests by introducing a generalized structure of soil:soil skeleton formed by soil particles and the fluid in soil voids,under the assumptions of the incompressibility of soil particles and the compressibility of the fluid in soil voids.For the drained tests,the generalized dilatancy angle equation of granular soil would be degenerated to its current dilatancy angle equation.However,for the undrained tests,the generalized dilatancy angle equation of granular soil was derived with aλparameter that was related to the stress-strain state of soil and the nature of the fluid in soil voids.Theλparameter was determined by the initial dilatancy angles of granular soil at the onset of shearing on the same initial state of the soil in the drained and undrained tests.In addition,the generalized dilatancy angle equation of granular soil was verified for application in calculation of the dilatancy angles of sands in the drained and undrained tests.展开更多
An experimental program is conducted on model piled rafts in sand soil.The experimental program is aimed to investigate the behavior of raft on settlement reducing piles.The testing program includes tests on models of...An experimental program is conducted on model piled rafts in sand soil.The experimental program is aimed to investigate the behavior of raft on settlement reducing piles.The testing program includes tests on models of single pile,unpiled rafts and rafts on 1,4,9,or 16 piles.The model piles beneath the rafts are closed ended displacement piles installed by driving.Three lengths of piles are used in the experiments to represent slenderness ratio,L/D,of 20,30 and 50,respectively.The dimensions of the model rafts are 30 cm×30 cm with different thickness of 0.5 cm,1.0 cm or 1.5 cm.The raft-soil stiffness ratios of the model rafts ranging from 0.39 to 10.56 cover flexible to very stiff rafts.The improvement in the ultimate bearing capacity is represented by the load improvement ratio,LIR,and the reductions in average settlement and differential settlement are represented by the settlement ratio,SR,and the differential settlement ratio,DSR,respectively.The effects of the number of settlement reducing piles,raft relative stiffness,and the slenderness ratio of piles on the load improvement ratio,settlement ratio and differential settlement ratio are presented and discussed.The results of the tests show the effectiveness of using piles as settlement reduction measure with the rafts.As the number of settlement reducing piles increases,the load improvement ratio increases and the differential settlement ratio decreases.展开更多
The mechanical behaviors of the interface between coarse-grained soil and concrete were investigated by simple shear tests under condition of mixed soil slurry (bentonite mixed with cement grout).For comparison,the in...The mechanical behaviors of the interface between coarse-grained soil and concrete were investigated by simple shear tests under condition of mixed soil slurry (bentonite mixed with cement grout).For comparison,the interfaces both without slurry and with bentonite slurry were analyzed.The experimental results show that different slurries exert much influence on the strength and deformation of soil/structure interface.Under mixed soil slurry,strain softening and shear dilatation are observed,while shear dilatation appears under the small normal stress of the interface without slurry,and shear contraction is significant under the condition of the bentonite slurry.The thickness of the interface was determined by analyzing the disturbed height of the sample with both simple shear test and particle flow code (PFC).An elasto-plastic constitutive model incorporating strain softening and dilatancy for thin layer element of interface was formulated in the framework of generalized potential theory.The relation curves of shear stress and shear strain,as well as the relation curves of normal strain and shear strain,were fitted by a piecewise function composed by hyperbolic functions and resembling normal functions.The entire model parameters can be identified by tests.The new model is verified by comparing the measured data of indoor cut-off wall model tests with the predictions from finite element method (FEM).The FEM results indicate that the stress of wall calculated by using Goodman element is too large,and the maximum deviation between the test data and prediction is about 45%.While the prediction from the proposed model is close to the measured data,and the error is generally less than 10%.展开更多
基金Natural Science Foundation of Jiangsu Province of China under Grant No.BK2012810
文摘The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undrained pulling sphere tests were carried out and the train loads were simulated through localized and cyclic vibration at various frequencies.Laboratory testing results indicate that the fl ow characteristics of soft soil can be signifi cantly enhanced by high-frequency vibration;meanwhile the continuous increase in fl ow characteristics caused by cyclic vibration may be an important reason for the long-term settlement of soft subsoil.The infl uence of sand content on fl ow characteristics is also studied in detail,and it is shown that the addition of coarse sand can weaken the fl ow characteristics of soft soil induced by sudden vibration at lower than 50 Hz.Under the condition of cyclic vibration,the growth of the fl ow characteristics of sand-clay mixtures is mainly caused by the fi rst-time vibration in the cycle,and the increase in sand content can make the fl ow characteristics present a faster convergent tendency.
基金Supported by:National Natural Science Foundation of China under Grant Nos.52008233 and U1839201the National Key Research and Development Program of China under Grant No.2018YFC1504305the Innovative Research Groups of the National Natural Science Foundation of China under Grant No.51421005。
文摘Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.51808112,51878160,and 52078128)the Natural Science Foundation of Jiangsu Province(Grant No.BK20180155).
文摘The existing studies have primarily focused on the effect of cyclic load characteristics(namely,cyclic load ratio and amplitude ratio)on cyclic lateral response of monopiles in sand,with little attention paid to the effect of pile−soil relative stiffness(K_(R)).This paper presents a series of 1-g cyclic tests aimed at improving understanding of the cyclic lateral responses of monopiles under different pile−soil systems.These systems are arranged by two model piles with different stiffness,including four different slenderness ratios(pile embedded length,L,normalized by diameter,D)under medium dense sand.The K_(R)-values are calculated by a previously proposed method considering the real soil stress level.The test results show that the lateral accumulation displacement increases significantly with the increment of the K_(R)-value,while the cyclic secant stiffness performs inversely.The maximum pile bending moment increases with the cycle number for the rigid pile−soil system,but shows a decreasing trend in the flexible system.For an uppermost concern,an empirical model is proposed to predict the accumulated displacement of arbitrary pile−soil systems by combining the results from this study with those from previous experimental investigations.The validity of the proposed model is demonstrated by 1-g and centrifuge tests.
文摘This paper aims at widespread presence of expansive soil which can be obtained in the project from Xiaoxita to Yaqueling first-class highway rebuilding engineering in Yichang City of Hubei Province and weathered sand which can be made full use locally,many experiments have been made. Compaction experiments and expansibility index indoor experiments of undisturbed expansive soil and expansive soil mixed with sand ranging from 10 % to 50 % have been made. Through the test mixing undisturbed expansive soil with different content of weathered sand,it can change the expansive soil water characteristics and compaction characteristics. It can influence the expansibility of the expansive soil index and significantly inhibit the expansibility of the expansive soil and reach the standard of roadbed filler.
文摘In this paper, through the indoor free load swelling rate test, expansive soil in a section of a first- class highway reconstruction project in Yichang City was studied. It emphatically analyzed the interrelations among free load swelling rate, non-load time, the proportion of mixed sand and initial dry density. Experimen- tal studies have shown that: Free load swelling deformation is mainly divided into three stages of rapid expan- sion, slow expansion and final stability; when the initial dry density is constant, free load swelling rate of the weathered sand modified soil will reduce rapidly before they slow down with the increase of sand proportion, and weathered sand modified soil free load swelling rate is not sensitive to the large amount of sand mixed; in the same mixed sand ratio, weathered sand modified soil free load swelling rate increases rapidly with the in- crease of initial dry density, there is a good linear correlation between them. To take appropriate control of the initial dry density during the expansive soil subgrade construction helps to reduce its swelling deformation and ensures the stability of the embankment.
基金Funded by National Natural Science Foundation of China(Grant No.41272296)
文摘Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.
文摘This paper presents the results of laboratory test on the feasibility of soil conditioning for earth pressurebalance (EPB) excavation in a tar sand, which is a natural material never studied in this respect. Thelaboratory test performed is based on a procedure and methods used in previous studies with differenttypes of soils, but for this special complex material, additional tests are also conducted to verify particularproperties of the tar sands, such as the tilt test and vane shear test usually used in cohesive materials, anda direct shear test. The laboratory test proves that the test procedure is applicable also to this type of soiland the conditioned material can be considered suitable for EPB excavations, although it is necessary touse a certain percentage of fine elements (filler) to create a material suitable to be mixed with foam. Thetest results show that the conditioned material fulfils the required standard for an EPB application.
基金Project(51678037)supported by the National Natural Science Foundation of ChinaProject(2015CB057802)supported by the National Basic Research Program of ChinaProject(BLX2015-20)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A novel horizontal trap-door test system was devised in this study to analyze the face stability of shield tunnels in sands.The test system can be used to investigate both the longitudinal and cross sections of the face failure simultaneously at one single apparatus and was employed to perform face stability tests on small-scaled tunnel models at single gravity.The lateral support pressures and failure zones were studied with varying sand materials and earth covers.The results demonstrate that the tunnel face moves back,the lateral active earth pressure on the tunnel face decreases rapidly to a residual value,and the lateral pressure distribution can be categorized into three stages during the failure process:1)initial state;2)pressure dissipation stage;and 3)pressure zone diminution stage.Furthermore,face failure firstly develops from a stable condition to the local failure state,and then continues to develop to the global failure state that can be divided into two sub-zones with different failure mechanisms:rotational failure zone(lower zone)and gravitational failure zone(upper zone).Further discussion shows that under the effects of soil arching,the shape of the gravitational failure zone can adopt arch shaped(most frequent)and column shaped(in shallow tunnels).Limit support pressure for face stability usually appears atδ/D=0.2%−0.5%(ratio of face displacement to tunnel diameter).
基金supported by the National Natural Science Foundation of China(Grant no.41807268)the Youth Innovation Promotion Association of Chinese Academy of Sciences-China(Grant no.2018408)。
文摘This paper presents a generalized dilatancy angle equation of granular soil to cover not only the drained tests but also the undrained tests by introducing a generalized structure of soil:soil skeleton formed by soil particles and the fluid in soil voids,under the assumptions of the incompressibility of soil particles and the compressibility of the fluid in soil voids.For the drained tests,the generalized dilatancy angle equation of granular soil would be degenerated to its current dilatancy angle equation.However,for the undrained tests,the generalized dilatancy angle equation of granular soil was derived with aλparameter that was related to the stress-strain state of soil and the nature of the fluid in soil voids.Theλparameter was determined by the initial dilatancy angles of granular soil at the onset of shearing on the same initial state of the soil in the drained and undrained tests.In addition,the generalized dilatancy angle equation of granular soil was verified for application in calculation of the dilatancy angles of sands in the drained and undrained tests.
文摘An experimental program is conducted on model piled rafts in sand soil.The experimental program is aimed to investigate the behavior of raft on settlement reducing piles.The testing program includes tests on models of single pile,unpiled rafts and rafts on 1,4,9,or 16 piles.The model piles beneath the rafts are closed ended displacement piles installed by driving.Three lengths of piles are used in the experiments to represent slenderness ratio,L/D,of 20,30 and 50,respectively.The dimensions of the model rafts are 30 cm×30 cm with different thickness of 0.5 cm,1.0 cm or 1.5 cm.The raft-soil stiffness ratios of the model rafts ranging from 0.39 to 10.56 cover flexible to very stiff rafts.The improvement in the ultimate bearing capacity is represented by the load improvement ratio,LIR,and the reductions in average settlement and differential settlement are represented by the settlement ratio,SR,and the differential settlement ratio,DSR,respectively.The effects of the number of settlement reducing piles,raft relative stiffness,and the slenderness ratio of piles on the load improvement ratio,settlement ratio and differential settlement ratio are presented and discussed.The results of the tests show the effectiveness of using piles as settlement reduction measure with the rafts.As the number of settlement reducing piles increases,the load improvement ratio increases and the differential settlement ratio decreases.
基金Project(20110094110002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(200801014) supported by the Ministry of Water Resources of ChinaProject(50825901) supported by the National Natural Science Foundation of China
文摘The mechanical behaviors of the interface between coarse-grained soil and concrete were investigated by simple shear tests under condition of mixed soil slurry (bentonite mixed with cement grout).For comparison,the interfaces both without slurry and with bentonite slurry were analyzed.The experimental results show that different slurries exert much influence on the strength and deformation of soil/structure interface.Under mixed soil slurry,strain softening and shear dilatation are observed,while shear dilatation appears under the small normal stress of the interface without slurry,and shear contraction is significant under the condition of the bentonite slurry.The thickness of the interface was determined by analyzing the disturbed height of the sample with both simple shear test and particle flow code (PFC).An elasto-plastic constitutive model incorporating strain softening and dilatancy for thin layer element of interface was formulated in the framework of generalized potential theory.The relation curves of shear stress and shear strain,as well as the relation curves of normal strain and shear strain,were fitted by a piecewise function composed by hyperbolic functions and resembling normal functions.The entire model parameters can be identified by tests.The new model is verified by comparing the measured data of indoor cut-off wall model tests with the predictions from finite element method (FEM).The FEM results indicate that the stress of wall calculated by using Goodman element is too large,and the maximum deviation between the test data and prediction is about 45%.While the prediction from the proposed model is close to the measured data,and the error is generally less than 10%.