Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculat...Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.展开更多
An observing method for stator flux and rotor flux is presented. Based on the proposed flux observing method, a novel speed estimator has been designed. At last, the speed estimator combined with the flux observing is...An observing method for stator flux and rotor flux is presented. Based on the proposed flux observing method, a novel speed estimator has been designed. At last, the speed estimator combined with the flux observing is applied in the direct torque control system without speed sensor. The simulation results show that these methods can improve the accuracy of speed observing and the low speed performance of direct torque control system, and strengthen the robustness of system.展开更多
Calculated results of inertia moment of turbo-generator rotor can be quite different by methods used in load rejection tests. In view of fluctuation features of rotor speed rise curve during load rejection tests, the ...Calculated results of inertia moment of turbo-generator rotor can be quite different by methods used in load rejection tests. In view of fluctuation features of rotor speed rise curve during load rejection tests, the measurement principle of rotor inertia moment was expounded. Based on the measured data in load rejection tests for an imported type of domestic 300-MW generating unit, the rotor speed rise curve was fitted with three kinds of functions to get initial runup rate, but the obtained results differed a lot from each other. According to analysis on the mechanism of rotor speed rise, m=2 consecutive points averaging or FFT (Fast Fourier Transform) smoothing technology was introduced to process test data, and then the initial runup rate was determined by the method of linear fitting of rotor speed in the range of governing valve closing time. Although the obtained curves had a fluctuating shape, the results of rotor inertia moment for 50% and 100% load rejection tests were of good consistency.展开更多
In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed,a cascade PID control...In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed,a cascade PID control method based on the acceleration estimator of gas turbine speed(Ngdot)and rotor predicted torque feedforward is proposed.Firstly,a two-speed Dual Clutch Transmission(DCT)model is applied in the integrated rotor/turboshaft engine system to achieve variable rotor speed.Then,an online estimation method of Ngdot based on the Linear Quadratic Gaussian with Loop Transfer Recovery(LQG/LTR)is proposed for power turbine speed cascade control.Finally,according to the cascade PID controller based on Ngdot estimator,a rotor demanded torque predicted method based on the Min-batch Gradient Descent-Neural Network(MGD-NN)is put forward to compromise the influence of rotor torque interference.The simulation results show that compared with cascade PID controller based on Ngdot estimator and the one combined with collective pitch feedforward control,the novel control method proposed can reduce the overshoot of power turbine speed by more than 20%,which possesses faster response,superior dynamic effect and satisfactory robustness performance.The control method proposed can realize the fast response control of turboshaft engine with variable rotor speed better.展开更多
Focusing on aerodynamic characteristics of rigid coaxial rotor of a high-speed helicopter in hover and forward flight, a wind tunnel test is conducted in the 8 m ? 6 m low-speed straightflow wind tunnel of China Aerod...Focusing on aerodynamic characteristics of rigid coaxial rotor of a high-speed helicopter in hover and forward flight, a wind tunnel test is conducted in the 8 m ? 6 m low-speed straightflow wind tunnel of China Aerodynamics Research and Development Center. In the experiment,a 4 m diameter composite model rigid coaxial rotor is designed and manufactured, and firstorder flapping frequency ratio of the blade is 1.796 to ensure sufficient stiffness at the blade root.Rotor aerodynamic performance is measured under hovering and high advance ratio conditions.Also, the numerical method is used to calculate aerodynamic characteristics in typical states of the rigid coaxial rotor for analysis purpose. The rotor lift-drag ratio and lateral lift offset in the experiment are emphatically analyzed for the rigid coaxial rotor. The results indicate that in forward flight condition, the rotor lift-drag ratio first increases and then decreases with the increment of advance ratio and lift offset. When advance ratio remains constant, with the increment of lift offset, the lift-drag ratio of rigid coaxial rotor first increases and then decreases.展开更多
A wave rotor is suitable for compact and efficient pressure-exchange between gas flows.This work measured the circumferential pressure distribution of the rotor/stator interfaces and utilized a CFD method to simulate ...A wave rotor is suitable for compact and efficient pressure-exchange between gas flows.This work measured the circumferential pressure distribution of the rotor/stator interfaces and utilized a CFD method to simulate the unsteady pressure waves.The experimental and CFD results showed some slopes in the circumferential pressure distributions,and the slopes indicated the traces of specific unsteady pressure waves.Such traces varied regularly if the rotational speed varied within a range from-11%to+11%off the baseline value,but they were seriously disturbed if the rotational speed varied by-45%from the baseline value.It verified that a pressure wave in a wave rotor tended to keep its pressure ratio and propagation velocity unchanged if the rotational speed varied by a small extent,and that the pressure wave could not keep its propagation patterns if the rotational speed varied by a large extent.Because of the pressure wave behaviors,the wave rotor demonstrated specific regulations of the rotational speed effects on its operational states.展开更多
文摘Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.
文摘An observing method for stator flux and rotor flux is presented. Based on the proposed flux observing method, a novel speed estimator has been designed. At last, the speed estimator combined with the flux observing is applied in the direct torque control system without speed sensor. The simulation results show that these methods can improve the accuracy of speed observing and the low speed performance of direct torque control system, and strengthen the robustness of system.
文摘Calculated results of inertia moment of turbo-generator rotor can be quite different by methods used in load rejection tests. In view of fluctuation features of rotor speed rise curve during load rejection tests, the measurement principle of rotor inertia moment was expounded. Based on the measured data in load rejection tests for an imported type of domestic 300-MW generating unit, the rotor speed rise curve was fitted with three kinds of functions to get initial runup rate, but the obtained results differed a lot from each other. According to analysis on the mechanism of rotor speed rise, m=2 consecutive points averaging or FFT (Fast Fourier Transform) smoothing technology was introduced to process test data, and then the initial runup rate was determined by the method of linear fitting of rotor speed in the range of governing valve closing time. Although the obtained curves had a fluctuating shape, the results of rotor inertia moment for 50% and 100% load rejection tests were of good consistency.
基金co-supported by the National Natural Science Foundation of China,China(Nos.51576096 and 51906102)Qing Lan and 333 Project,the Fundamental Research Funds for the Central Universities,China(No.NT2019004)+3 种基金National Science and Technology Major Project China(No.2017-V-0004-0054)Research on the Basic Problem of Intelligent Aero-engine,China(No.2017-JCJQ-ZD-04721)China Postdoctoral Science Foundation Funded Project,China(No.2019M661835)Aeronautics Power Foundation,China(No.6141B09050385)。
文摘In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed,a cascade PID control method based on the acceleration estimator of gas turbine speed(Ngdot)and rotor predicted torque feedforward is proposed.Firstly,a two-speed Dual Clutch Transmission(DCT)model is applied in the integrated rotor/turboshaft engine system to achieve variable rotor speed.Then,an online estimation method of Ngdot based on the Linear Quadratic Gaussian with Loop Transfer Recovery(LQG/LTR)is proposed for power turbine speed cascade control.Finally,according to the cascade PID controller based on Ngdot estimator,a rotor demanded torque predicted method based on the Min-batch Gradient Descent-Neural Network(MGD-NN)is put forward to compromise the influence of rotor torque interference.The simulation results show that compared with cascade PID controller based on Ngdot estimator and the one combined with collective pitch feedforward control,the novel control method proposed can reduce the overshoot of power turbine speed by more than 20%,which possesses faster response,superior dynamic effect and satisfactory robustness performance.The control method proposed can realize the fast response control of turboshaft engine with variable rotor speed better.
文摘Focusing on aerodynamic characteristics of rigid coaxial rotor of a high-speed helicopter in hover and forward flight, a wind tunnel test is conducted in the 8 m ? 6 m low-speed straightflow wind tunnel of China Aerodynamics Research and Development Center. In the experiment,a 4 m diameter composite model rigid coaxial rotor is designed and manufactured, and firstorder flapping frequency ratio of the blade is 1.796 to ensure sufficient stiffness at the blade root.Rotor aerodynamic performance is measured under hovering and high advance ratio conditions.Also, the numerical method is used to calculate aerodynamic characteristics in typical states of the rigid coaxial rotor for analysis purpose. The rotor lift-drag ratio and lateral lift offset in the experiment are emphatically analyzed for the rigid coaxial rotor. The results indicate that in forward flight condition, the rotor lift-drag ratio first increases and then decreases with the increment of advance ratio and lift offset. When advance ratio remains constant, with the increment of lift offset, the lift-drag ratio of rigid coaxial rotor first increases and then decreases.
基金The National Natural Science Foundation of China(No.52107048)Jiangsu Provincial Natural Science Foundation of Higher Education(No.21KJB470021)the Scientific Research Foundation for the High-level Personnel of Nanjing Institute of Technology(No.YKJ2019107).
基金co-supported by the National Natural Science Foundation of China(No.51906007)the National Key Laboratory Foundation of China(No.6142702190204)。
文摘A wave rotor is suitable for compact and efficient pressure-exchange between gas flows.This work measured the circumferential pressure distribution of the rotor/stator interfaces and utilized a CFD method to simulate the unsteady pressure waves.The experimental and CFD results showed some slopes in the circumferential pressure distributions,and the slopes indicated the traces of specific unsteady pressure waves.Such traces varied regularly if the rotational speed varied within a range from-11%to+11%off the baseline value,but they were seriously disturbed if the rotational speed varied by-45%from the baseline value.It verified that a pressure wave in a wave rotor tended to keep its pressure ratio and propagation velocity unchanged if the rotational speed varied by a small extent,and that the pressure wave could not keep its propagation patterns if the rotational speed varied by a large extent.Because of the pressure wave behaviors,the wave rotor demonstrated specific regulations of the rotational speed effects on its operational states.