To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column sp...To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1.展开更多
Nine PHC piles with partial normal-strength deformed bars were prepared in present study,and cyclic loading tests were implemented to evaluate these piles’seismic performance.The influence of the axial compression ra...Nine PHC piles with partial normal-strength deformed bars were prepared in present study,and cyclic loading tests were implemented to evaluate these piles’seismic performance.The influence of the axial compression ratio and the amount of normal-strength deformed bars on failure modes,crack patterns,strength,stiffness,and ductility were examined.The test findings indicate that the change of axial compression ratio has a noticeable influence on the failure mode of PHC piles.A larger axial compression ratio results in a higher cracking bending resistance,ultimate bending resistance,and initial stiffness,but the propagation heights of flexural cracks decrease as the axial compression ratio increases.Furthermore,increasing the amount of normal-strength deformed bars causes a slight decrease in ductility.Finally,a calculation formula was proposed to predict the flexural capacity of PHC piles with partial normal-strength deformed bars.展开更多
Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hy...Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.展开更多
A new composite strengthening method of seismic-damaged lateral joints in composite frame consisting of Concrete-Filled SquareSteel Tubes (CFSST) columns and steel beams strengthened with enclosed Reinforced Concre...A new composite strengthening method of seismic-damaged lateral joints in composite frame consisting of Concrete-Filled SquareSteel Tubes (CFSST) columns and steel beams strengthened with enclosed Reinforced Concrete (RC) at the ends of columns andwelding steel plates at the ends of beams was presented. Based on the current design specifications, one half scaled models of 4lateral joints in composite frame consisting of CFSST columns and steel beams were designed and manufactured. One model wasoriginal control specimen, one was strengthened by enclosed RC, and the others were strengthened after pre-damage. The destructiontests under lateral cyclic load on the models were carried. The effectiveness of seismic-damaged joints strengthened with enclosedRC and the reinforcement effect on different levels of seismic damage were studied. The test results show that seismic- damagedjoints in composite frame consisting of CFSST columns and steel beams strengthened with enclosed RC meets the strongcolumn-weak beam joints requirement of seismic design, and the failure modes are of all joints are the bending failure of steel beam.The reinforcement with enclosed RC has a significant on increasing the ultimate capacity and the seismic behaviors of joints. Thestudy indicated the rehabilitated joints recover the level of their original seismic performances before seismic damage in a certainextent damage level. Based on the test data, namely the ultimate capacity, limit displacement, ductility, the energy consumptioncoefficient, limit displacementthe strengthening method of seismic-damaged joints by strengthened with enclosed RC is an effectivemethod for seismic strengthening.展开更多
This study investigated the influence factors on the seismic response and deformation modes of retaining walls using large-scale model shaking table tests. Experimental results showed that the distribution of peak sei...This study investigated the influence factors on the seismic response and deformation modes of retaining walls using large-scale model shaking table tests. Experimental results showed that the distribution of peak seismic earth pressures along the height of a wall was a single peak value curve. The seismic earth pressures on a gravel soil retaining wall were larger than the pressures on the weathered granite and quartz retaining walls. Also, the peak seismic earth pressure increased with increases in the peak ground acceleration and the wall height. The measured seismic active earth pressures on a rock foundation retaining wall were larger than the calculated values, and the action position of resultant seismic pressure was higher than 0.33 H. In the soil foundation retaining wall, the measured seismic earth pressures were much smaller than the calculated values, while the action position was slightly higher than 0.33 H. The soil foundation retaining wall suffered base sliding and overturning under earthquake conditions, while overturning was the main failure mode for the rock foundation retaining walls.展开更多
The stability and seismic behavior of geosynthetic-reinforced embankments during the earthquake is not well known.In this paper,the damage types of embankments were summarized,and the seismic stability of reinforced e...The stability and seismic behavior of geosynthetic-reinforced embankments during the earthquake is not well known.In this paper,the damage types of embankments were summarized,and the seismic stability of reinforced embankment were analyzed through an earthquake damage investigation in the Wenchuan earthquake region.Then,large-scale shaking table model tests were performed on the geosynthetic-reinforced embankment.The results show that the damage level of the reinforced embankment was almost less than that of the unreinforced embankment.The peak seismic earth pressure was nonlinear along the height of the embankment,the largest peak seismic earth pressure was roughly in the middle of the embankment slope.The peak ground accelerations(PGA)amplification factor first showed an increasing pattern and then a decreasing pattern with the increase of elevation,but there was a final increasing trend along the height of the reinforced embankment.The results can help to establish the proper design of the reinforcement embankments under earthquake conditions.展开更多
This study investigates the enhanced effect of timber infill walls on the seismic behavior of traditional Chinese timber frames.Two 1/2 scaled traditional Chinese timber infill walls(TIWs),two 1/2 scaled timber frames...This study investigates the enhanced effect of timber infill walls on the seismic behavior of traditional Chinese timber frames.Two 1/2 scaled traditional Chinese timber infill walls(TIWs),two 1/2 scaled timber frames with timber infill walls(TFTIWs)and one 1/2 scaled timber frame(TF)were fabricated and tested under low-cyclic reversed loading.The failure modes,strength,stiffness,and energy consumption capacity of the TIWs and the TFTIWs were obtained,and the effects of the TIWs on the seismic performance of the TFTIWs were investigated.The results showed that the TIWs can increase the stiffness and ultimate bearing capacity of the TF,up to 60%and 80%,respectively.The strength degradation coefficient of the TFTIWs was slightly higher than that of the TF when the inter-story drift ratio exceeded 0.02 rad,and the TIWs helped to mitigate the strength degradation of the TFTIWs.It was also found that the TFTIWs had a higher cumulative energy dissipation when compared with the TF(up to a 60%increase),indicating the TIWs had reasonably good energy dissipation capacity.When the TIWs generated a solid contribution to the carrying capacity and energy dissipation of the TF,the lateral drift thresholds were 1/100 and 1/43 of the column height,respectively.Furthermore,the TIWs and TFTIWs presented a good ductility,and the TIW could effectively reduce the pull-out amount of the tenon from the mortise of the TF;however,the TIWs had little influence on the stiffness degradation level or improvement of the ductility of the TF.展开更多
Sandy gravel foundations exhibit non-linear dynamic behavior when subjected to strong ground motions,which can have amplification effects on superstructures and can reveal insufficient lateral resistance of foundation...Sandy gravel foundations exhibit non-linear dynamic behavior when subjected to strong ground motions,which can have amplification effects on superstructures and can reveal insufficient lateral resistance of foundations.Grouting methods can be used to improve the seismic performance of natural sandy gravel foundations.The strength and stiffness of grouted sandy gravel foundations are different from those of natural foundations,which have unknown earthquake resistance.Few studies have investigated the seismic behavior of sandy gravel foundations before and after grouting.In this study,two shaking table tests were performed to evaluate the effect of grouting reinforcement on seismic performance.The natural frequency,acceleration amplification effect,lateral displacement,and vertical settlement of the non-grouted and grouted sandy gravel foundations were measured and compared.Additionally,the dynamic stress-strain relationships of the two foundations were obtained by a linear inversion method to evaluate the seismic energy dissipation.The test results indicated that the acceleration amplification,lateral displacement amplitude,and vertical settlement of the grouted sandy gravel foundation were lower than that of the non-grouted foundation under low-intensity earthquakes.However,a contrasting result was observed under high-intensity earthquakes.This demonstrated that different grouting reinforcement strategies are required for different sandy gravel foundations.In addition,the dynamic stress-strain relationship of the two foundations exhibited two different energy dissipation mechanisms.The results provide insights relating to the development of foundations for relevant engineering sites and to the dynamic behavior of grouted foundations prior to investigating soil-structure interaction problems.展开更多
To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacement...To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone.展开更多
Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and ...Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and Shanghai artificial wave were adopted as the input excitation. The entire test process can be divided into three stages depending on the lateral brace configurations, i.e., fully (five) braced, two braces removed, and all braces removed. A total of 46 tests, starting from the elastic state to failure condition, have been conducted. The natural vibration frequencies, responses of acceleration, displacement and strain were measured. From the test results, it is demonstrated that the CFT arch structures are capable of resisting severe ground motions and that CFT arches offer a credible alternative to reinforced concrete arches, especially in regions of high seismic intensity.展开更多
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horiz...Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.展开更多
In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are simila...In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are similar. The braces are made of various steel grades to monitor the effects of seismic excitation. Internal stiffeners are employed to limit the local buckling and increase the fracture life of the steel bracing. A heavy central core is introduced at the intersection of the braces to decrease their effective length. Recent seismic specifications are considered in the design of the X-braced frame members to verify their efficiency. The failure modes of the X-braced frames are also illustrated. It is observed that the energy dissipation capacity, ultimate load capacity and ductility of the system increase considerably by using lower grade steel and proposed detailing. Analytical modeling of the specimens using nonlinear finite element software supports the experimental findings.展开更多
Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer.New types of sandwich walls are continually being introduced in research and ...Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer.New types of sandwich walls are continually being introduced in research and applications,and due to their unique bond patterns,experimental studies have been performed to investigate their mechanical properties,especially with regard to their seismic performance.In this study,three new types of sandwich masonry wall have been designed,and cyclic lateral loading tests were carried out on five specimens.The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks,and the failure patterns were considerably influenced by the aspect ratio.Analysis was undertaken on the seismic response of the new walls,which included ductility,stiffness degradation and energy dissipation capacity,and no obvious difference was observed between the seismic performance of the new walls and traditional walls.Comparisons were made between the experimental results and the calculated results of the shear capacity.It is concluded that the formulas in the two Chinese codes(GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls,and the formula in GB 50011 tends to be more conservative.展开更多
This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC co...This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC columns were designed and subjected to a low cycle,reversed loading test.The response,including the failure modes,hysteretic behavior,lateral bearing capacity,and displacement ductility,was analyzed.The effects of the axial compression ratio,stirrup form,and stirrup spacing of the central reinforcement configuration on the seismic performance of the columns were studied.Furthermore,an analytical model was developed to predict the backbone force-displacement curves of the MRHSC columns.The test results showed that these columns experienced two failure modes:shear failure and flexure-shear failure.As the axial compression ratio increased,the bearing capacity increased significantly,whereas the deformation capacity and ductility decreased.A decrease in the spacing of central transverse reinforcements improved the ductility and delayed the degradation of load-bearing capacity.The proposed analytical model can accurately predict the lateral force and deformations of MRHSC columns.展开更多
Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pi...Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.展开更多
Argan oil is renowned for its particular biochemical profile: high-fat oleic and linoleic acids, tocopherols, sterols, polyphenols. This composition gives it nutritional, therapeutic and preventive properties against ...Argan oil is renowned for its particular biochemical profile: high-fat oleic and linoleic acids, tocopherols, sterols, polyphenols. This composition gives it nutritional, therapeutic and preventive properties against dermatological, metabolic and proliferative diseases. The composition of argan oil assigns its benefits to mental health;it would be provided with possible effects on the prevention and/or cure of stress related disorder. This work aims to evaluate the impact of argan oil dietary on the behavioral response, biochemical and hematological constants and histological profiles of adrenal involved in emotional responses to stress. The variation of these parameters was evaluated in Wistar rats receiving dietary 10 ml/Kg/day of argan oil, starting from weaning, for 13 weeks. Our results show that supplementation has resulted in an increase in locomotor activity, reduced sensitivity to frightening environments with sex dependent variation. Moreover, lipid markers, corticosterone and lymphocytes show a rising trend. If the important role of argan oil diet in cardio-metabolic health is generally well recognized;for mental health, it is the first study that needs further investigation linking between the nervous system, inflammation parameters and metabolism.展开更多
基金the National Natural Science Foundation of China under Grants Nos.51261120377 and 51008173
文摘To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1.
基金National Natural Science Foundation of China under Grant No.51578369the Tianjin Science and Technology Major Project under Grant No.17ZXCXSF00080。
文摘Nine PHC piles with partial normal-strength deformed bars were prepared in present study,and cyclic loading tests were implemented to evaluate these piles’seismic performance.The influence of the axial compression ratio and the amount of normal-strength deformed bars on failure modes,crack patterns,strength,stiffness,and ductility were examined.The test findings indicate that the change of axial compression ratio has a noticeable influence on the failure mode of PHC piles.A larger axial compression ratio results in a higher cracking bending resistance,ultimate bending resistance,and initial stiffness,but the propagation heights of flexural cracks decrease as the axial compression ratio increases.Furthermore,increasing the amount of normal-strength deformed bars causes a slight decrease in ductility.Finally,a calculation formula was proposed to predict the flexural capacity of PHC piles with partial normal-strength deformed bars.
基金National Natural Science Foundation of China under Grant No.51178029 State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University under Grant No.SLDRCE08-MB-01
文摘Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.
文摘A new composite strengthening method of seismic-damaged lateral joints in composite frame consisting of Concrete-Filled SquareSteel Tubes (CFSST) columns and steel beams strengthened with enclosed Reinforced Concrete (RC) at the ends of columns andwelding steel plates at the ends of beams was presented. Based on the current design specifications, one half scaled models of 4lateral joints in composite frame consisting of CFSST columns and steel beams were designed and manufactured. One model wasoriginal control specimen, one was strengthened by enclosed RC, and the others were strengthened after pre-damage. The destructiontests under lateral cyclic load on the models were carried. The effectiveness of seismic-damaged joints strengthened with enclosedRC and the reinforcement effect on different levels of seismic damage were studied. The test results show that seismic- damagedjoints in composite frame consisting of CFSST columns and steel beams strengthened with enclosed RC meets the strongcolumn-weak beam joints requirement of seismic design, and the failure modes are of all joints are the bending failure of steel beam.The reinforcement with enclosed RC has a significant on increasing the ultimate capacity and the seismic behaviors of joints. Thestudy indicated the rehabilitated joints recover the level of their original seismic performances before seismic damage in a certainextent damage level. Based on the test data, namely the ultimate capacity, limit displacement, ductility, the energy consumptioncoefficient, limit displacementthe strengthening method of seismic-damaged joints by strengthened with enclosed RC is an effectivemethod for seismic strengthening.
基金the National Program on Key Research Project of China (Grant No. 2016YFC0802206)the open research fund of MOE Key Laboratory of High-speed Railway Engineering,Southwest Jiaotong University and Doctoral Innovation Fund Program of Southwest University of Science and Technology (Grant No. 16zx7123)
文摘This study investigated the influence factors on the seismic response and deformation modes of retaining walls using large-scale model shaking table tests. Experimental results showed that the distribution of peak seismic earth pressures along the height of a wall was a single peak value curve. The seismic earth pressures on a gravel soil retaining wall were larger than the pressures on the weathered granite and quartz retaining walls. Also, the peak seismic earth pressure increased with increases in the peak ground acceleration and the wall height. The measured seismic active earth pressures on a rock foundation retaining wall were larger than the calculated values, and the action position of resultant seismic pressure was higher than 0.33 H. In the soil foundation retaining wall, the measured seismic earth pressures were much smaller than the calculated values, while the action position was slightly higher than 0.33 H. The soil foundation retaining wall suffered base sliding and overturning under earthquake conditions, while overturning was the main failure mode for the rock foundation retaining walls.
基金supported by the Key Research Project of China(Grant No.2016YFC0802206)the Sichuan Science and Technology Program(Grant No.2019YFG0001,20GJHZ0205)+1 种基金the open research fund of MOE Key Laboratory of High-speed Railway Engineering,Southwest Jiaotong UniversityDoctoral Innovation Fund Program of Southwest University of Science and Technology(Grant No.16zx7123)
文摘The stability and seismic behavior of geosynthetic-reinforced embankments during the earthquake is not well known.In this paper,the damage types of embankments were summarized,and the seismic stability of reinforced embankment were analyzed through an earthquake damage investigation in the Wenchuan earthquake region.Then,large-scale shaking table model tests were performed on the geosynthetic-reinforced embankment.The results show that the damage level of the reinforced embankment was almost less than that of the unreinforced embankment.The peak seismic earth pressure was nonlinear along the height of the embankment,the largest peak seismic earth pressure was roughly in the middle of the embankment slope.The peak ground accelerations(PGA)amplification factor first showed an increasing pattern and then a decreasing pattern with the increase of elevation,but there was a final increasing trend along the height of the reinforced embankment.The results can help to establish the proper design of the reinforcement embankments under earthquake conditions.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2020EEEVL0410National Natural Science Foundation of China under Grant No.51878550Foundation Research Project of Shaanxi Province under Grant No.2021JC-44。
文摘This study investigates the enhanced effect of timber infill walls on the seismic behavior of traditional Chinese timber frames.Two 1/2 scaled traditional Chinese timber infill walls(TIWs),two 1/2 scaled timber frames with timber infill walls(TFTIWs)and one 1/2 scaled timber frame(TF)were fabricated and tested under low-cyclic reversed loading.The failure modes,strength,stiffness,and energy consumption capacity of the TIWs and the TFTIWs were obtained,and the effects of the TIWs on the seismic performance of the TFTIWs were investigated.The results showed that the TIWs can increase the stiffness and ultimate bearing capacity of the TF,up to 60%and 80%,respectively.The strength degradation coefficient of the TFTIWs was slightly higher than that of the TF when the inter-story drift ratio exceeded 0.02 rad,and the TIWs helped to mitigate the strength degradation of the TFTIWs.It was also found that the TFTIWs had a higher cumulative energy dissipation when compared with the TF(up to a 60%increase),indicating the TIWs had reasonably good energy dissipation capacity.When the TIWs generated a solid contribution to the carrying capacity and energy dissipation of the TF,the lateral drift thresholds were 1/100 and 1/43 of the column height,respectively.Furthermore,the TIWs and TFTIWs presented a good ductility,and the TIW could effectively reduce the pull-out amount of the tenon from the mortise of the TF;however,the TIWs had little influence on the stiffness degradation level or improvement of the ductility of the TF.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51878186 and 51738004)the Innovation Driven Development Science and Technology Project of Guangxi Province(No.AA18118055)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(No.2019ZDK041).
文摘Sandy gravel foundations exhibit non-linear dynamic behavior when subjected to strong ground motions,which can have amplification effects on superstructures and can reveal insufficient lateral resistance of foundations.Grouting methods can be used to improve the seismic performance of natural sandy gravel foundations.The strength and stiffness of grouted sandy gravel foundations are different from those of natural foundations,which have unknown earthquake resistance.Few studies have investigated the seismic behavior of sandy gravel foundations before and after grouting.In this study,two shaking table tests were performed to evaluate the effect of grouting reinforcement on seismic performance.The natural frequency,acceleration amplification effect,lateral displacement,and vertical settlement of the non-grouted and grouted sandy gravel foundations were measured and compared.Additionally,the dynamic stress-strain relationships of the two foundations were obtained by a linear inversion method to evaluate the seismic energy dissipation.The test results indicated that the acceleration amplification,lateral displacement amplitude,and vertical settlement of the grouted sandy gravel foundation were lower than that of the non-grouted foundation under low-intensity earthquakes.However,a contrasting result was observed under high-intensity earthquakes.This demonstrated that different grouting reinforcement strategies are required for different sandy gravel foundations.In addition,the dynamic stress-strain relationship of the two foundations exhibited two different energy dissipation mechanisms.The results provide insights relating to the development of foundations for relevant engineering sites and to the dynamic behavior of grouted foundations prior to investigating soil-structure interaction problems.
基金founded by the National Natural Science Foundation of China(Grant No.51708163)Research Program of the Ministry of Transport of the People’s Republic of China(Grant No.2013318800020)Doctoral Innovation Fund Program of Southwest Jiaotong University(Grant No.D-CX201703)
文摘To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone.
基金This study was supported by the National Natural Science Foundation of China under Grant No.50078016Open Funding of State Key Laboratory for Disaster Reduction in Civil Engineering,China.
文摘Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and Shanghai artificial wave were adopted as the input excitation. The entire test process can be divided into three stages depending on the lateral brace configurations, i.e., fully (five) braced, two braces removed, and all braces removed. A total of 46 tests, starting from the elastic state to failure condition, have been conducted. The natural vibration frequencies, responses of acceleration, displacement and strain were measured. From the test results, it is demonstrated that the CFT arch structures are capable of resisting severe ground motions and that CFT arches offer a credible alternative to reinforced concrete arches, especially in regions of high seismic intensity.
基金National Natural Science Foundation Under Grant No. 50708081 and 90815029Key Project of Chinese National Program for Fundamental Research and Development 2007CB714202Innovation Program of Shanghai Municipal Education 09ZZ32
文摘Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.
文摘In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are similar. The braces are made of various steel grades to monitor the effects of seismic excitation. Internal stiffeners are employed to limit the local buckling and increase the fracture life of the steel bracing. A heavy central core is introduced at the intersection of the braces to decrease their effective length. Recent seismic specifications are considered in the design of the X-braced frame members to verify their efficiency. The failure modes of the X-braced frames are also illustrated. It is observed that the energy dissipation capacity, ultimate load capacity and ductility of the system increase considerably by using lower grade steel and proposed detailing. Analytical modeling of the specimens using nonlinear finite element software supports the experimental findings.
基金Key Projects of the National Science & Technology Pillar Program under Grant No. 2008BAK48B03the National Natural Science Foundation of China Under Grant No.51178340Jiangsu Qixiu Group
文摘Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer.New types of sandwich walls are continually being introduced in research and applications,and due to their unique bond patterns,experimental studies have been performed to investigate their mechanical properties,especially with regard to their seismic performance.In this study,three new types of sandwich masonry wall have been designed,and cyclic lateral loading tests were carried out on five specimens.The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks,and the failure patterns were considerably influenced by the aspect ratio.Analysis was undertaken on the seismic response of the new walls,which included ductility,stiffness degradation and energy dissipation capacity,and no obvious difference was observed between the seismic performance of the new walls and traditional walls.Comparisons were made between the experimental results and the calculated results of the shear capacity.It is concluded that the formulas in the two Chinese codes(GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls,and the formula in GB 50011 tends to be more conservative.
基金Natural Science Foundation of China(NSFC)under Grant No.51868073Special Funds for Technology Innovation Guidance of Shaanxi under Grant No.2019CGHJ-06+1 种基金Natural Science Foundation of Shaanxi under Grant No.2018JQ5005Special Fund for Basic Scientific Research of Central Colleges under Grant No.300102288302。
文摘This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC columns were designed and subjected to a low cycle,reversed loading test.The response,including the failure modes,hysteretic behavior,lateral bearing capacity,and displacement ductility,was analyzed.The effects of the axial compression ratio,stirrup form,and stirrup spacing of the central reinforcement configuration on the seismic performance of the columns were studied.Furthermore,an analytical model was developed to predict the backbone force-displacement curves of the MRHSC columns.The test results showed that these columns experienced two failure modes:shear failure and flexure-shear failure.As the axial compression ratio increased,the bearing capacity increased significantly,whereas the deformation capacity and ductility decreased.A decrease in the spacing of central transverse reinforcements improved the ductility and delayed the degradation of load-bearing capacity.The proposed analytical model can accurately predict the lateral force and deformations of MRHSC columns.
基金National Natural Science Foundation of China under Grant Nos.51978656 and 51478459the Key Research and Development Project of Xuzhou under Grant No.KC22282the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Civil Engineering,China University of Mining and Technology under Grant No.KFJJ202004。
文摘Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.
文摘Argan oil is renowned for its particular biochemical profile: high-fat oleic and linoleic acids, tocopherols, sterols, polyphenols. This composition gives it nutritional, therapeutic and preventive properties against dermatological, metabolic and proliferative diseases. The composition of argan oil assigns its benefits to mental health;it would be provided with possible effects on the prevention and/or cure of stress related disorder. This work aims to evaluate the impact of argan oil dietary on the behavioral response, biochemical and hematological constants and histological profiles of adrenal involved in emotional responses to stress. The variation of these parameters was evaluated in Wistar rats receiving dietary 10 ml/Kg/day of argan oil, starting from weaning, for 13 weeks. Our results show that supplementation has resulted in an increase in locomotor activity, reduced sensitivity to frightening environments with sex dependent variation. Moreover, lipid markers, corticosterone and lymphocytes show a rising trend. If the important role of argan oil diet in cardio-metabolic health is generally well recognized;for mental health, it is the first study that needs further investigation linking between the nervous system, inflammation parameters and metabolism.