Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformat...Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.展开更多
As the increasing popularity and complexity of Web applications and the emergence of their new characteristics, the testing and maintenance of large, complex Web applications are becoming more complex and difficult. W...As the increasing popularity and complexity of Web applications and the emergence of their new characteristics, the testing and maintenance of large, complex Web applications are becoming more complex and difficult. Web applications generally contain lots of pages and are used by enormous users. Statistical testing is an effective way of ensuring their quality. Web usage can be accurately described by Markov chain which has been proved to be an ideal model for software statistical testing. The results of unit testing can be utilized in the latter stages, which is an important strategy for bottom-to-top integration testing, and the other improvement of extended Markov chain model (EMM) is to present the error type vector which is treated as a part of page node. this paper also proposes the algorithm for generating test cases of usage paths. Finally, optional usage reliability evaluation methods and an incremental usability regression testing model for testing and evaluation are presented. Key words statistical testing - evaluation for Web usability - extended Markov chain model (EMM) - Web log mining - reliability evaluation CLC number TP311. 5 Foundation item: Supported by the National Defence Research Project (No. 41315. 9. 2) and National Science and Technology Plan (2001BA102A04-02-03)Biography: MAO Cheng-ying (1978-), male, Ph.D. candidate, research direction: software testing. Research direction: advanced database system, software testing, component technology and data mining.展开更多
Following publication of the original article[1],the authors identified an error in the article title.The first word ‘Review’ is added mistakenly by the typesetter.
Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial app...Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial applications.This paper describes the basic principles of PA technology for NDT/E and its applications in recent years.PA technology for NDT/E includes the use of a modulated continuous-wave laser and a pulsed laser for PA wave excitation,PA-generated ultrasonic waves,and all-optical PA wave excitation and detection.PA technology for NDT/E has demonstrated broad applications,including the imaging of railway cracks and defects,the imaging of Li metal batteries,the measurements of the porosity and Young’s modulus,the detection of defects and damage in silicon wafers,and a visualization of underdrawings in paintings.展开更多
This paper deals with the effect of grade entitlement on English programs in Japanese universities. For years, teachers and administrators have noted that even though Japan is one of the highest spending countries on ...This paper deals with the effect of grade entitlement on English programs in Japanese universities. For years, teachers and administrators have noted that even though Japan is one of the highest spending countries on English education, there has not been a commensurate increase in English ability. Most research to explain this disparity has thus far focused on methodology, class size and teacher qualifications. Recent research dealing with academic entitlement at US universities may offer an alternative explanation for some of the lack of success that Japanese universities have experienced. Ellen Greenberger, one of the author's of Self-entitled college students: Contributions of personality, parenting and motivational factors, which appeared in 2008 in The Journal of Youth and Adolescence claims that in recent years, the number of students appealing their grades and expecting to be rewarded for effort rather than results has increased. Greenberger's paper motivated this study. 200 Japanese students completed a survey that presented a number of grade scenarios. The students were asked, based on test grades and completed assignments, what grade a student should receive in each hypothetical situation. Similarly, full-time and part-time teachers were asked what grade they would give in each situation. This paper explains the different situations, students' and teachers' responses to the scenarios, and then discusses the implications for English education in Japan.展开更多
An attempt was made to evaluate what is tested and how it is tested in the IELTS academic test from a thinking-based perspective. The analysis framework is an incorporation of Bloom's taxonomy of educational objec...An attempt was made to evaluate what is tested and how it is tested in the IELTS academic test from a thinking-based perspective. The analysis framework is an incorporation of Bloom's taxonomy of educational objectives and Bachman's classification of language knowledge. It is found that the IELTS test exemplifies an assessment of test-takers' language knowledge and cognitive processes.展开更多
Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering...Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering.With the continuous development of transportation engineering,the maintenance and reinforcement of existing bridges are also being given more emphasis.In order to scientifically evaluate the effectiveness of bridge maintenance and reinforcement,this paper analyzes its detection and evaluation,including the significance,key points,and main methods of detection and evaluation.Therefore,this analysis aim to provide some reference for the maintenance and reinforcement and the quality improvement of bridge engineering.展开更多
Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digit...Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digital radiographic testing and fully evaluate the integrated system inspection ability of equipment,personnel,and processes,a scientific and standardized evaluation method to the system is very necessary.Here investigates the precedents of relevant non-destructive testing evaluation methods at home and abroad,considers the testing characteristics of DR equipment,develops a complete set of DR testing system evaluation procedures.It deeply studies the adaptability methods of program processes from defect production to slicing processing and data statistical calculation for digital radiographic testing evaluation.To check the repeatability and reliability of the detectable system,five process welds with 200 real metallographic defects were fabricated in the laboratory.From the detected results,the DR system has good repeatability in image quality,and the detectable defect size reaches 0.85 mm under achieving 90%detection probability at a confidence level of 95%,the error of detected defect length is±2 mm,and the error of detected defect localization is±5 mm.The qualitative and quantitative detection of defects are accurate and reliable.The test further confirmed the reliable detection ability of the DR detection system,and fully validated the scientific and practical evaluation method designed.The research on the evaluation test method can serve as an important link in the quality control system for the on-site application of digital ray equipment in long-distance pipelines.The designed program,test,and evaluation content can serve as an important basis for the formulation of relevant specifications or standards.展开更多
1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is...1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.展开更多
This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load...This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.展开更多
The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other...The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other plastic process. The common test methods in laboratories are analyzed. It shows that though all those test methods can test the friction coefficient, the probe test method is most suitable for the research of friction and lubrication and the process in deep drawing, for this method is identical with the actual work condition either from the test principle or deformation status of the blank. Last the successful application in the deep drawing simulator newly developed the the probe method are intro- duced in detail.展开更多
The water quality in the Danjiangkou Reservoir has attracted considerable attention from the Chinese public and government since the announcement of the Middle Route of the South to North Water Diversion Project (SN...The water quality in the Danjiangkou Reservoir has attracted considerable attention from the Chinese public and government since the announcement of the Middle Route of the South to North Water Diversion Project (SNWDP), which commenced transferring water in 2014. Integrated research on the evaluation, prediction, and protection of water quality in the Danjiangkou Reservoir was carried out in this study in order to improve environmental management. Based on 120 water samples, wherein 17 water quality indices were measured at 20 monitoring sites, a single factor evaluation method was used to evaluate the current status of water quality. The results show that the main indices influencing the water quality in the Danjiangkou Reservoir are total phosphorus (TP), permanganate index (CODM,), dissolved oxygen (DO), and five-day biochemical oxygen demand (BODs), and the concentrations of TP, BODs, ammonia nitrogen (NH3--N), CODM,, DO, and anionic surfactant (Surfa) do not reach the specified standard levels in the tributaries. Seasonal Mann--Kendall tests indicated that the CODMn concentration shows a highly significant increasing trend, and the TP concentration shows a significant increasing trend in the Danjiangkou Reservoir. The distribution of the main water quality indices in the Danjiangkou Reservoir was predicted using a two-dimensional water quality numerical model, and showed that the sphere of influence from the tributaries can spread across half of the Han Reservoir if the pollutants are not controlled. Cluster analysis (CA) results suggest that the Shending River is heavily polluted, that the Jianghe, Sihe, and Jianhe rivers are moderately polluted, and that they should be the focus of environmental remediation.展开更多
Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instru...Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instruments that underlie the assessment of their production and handling safety have been described.Studies of a large number of compounds have revealed relationships between their sensitivity parameters and structure of individual compounds and compositions.The range of change of physical and chemical characteristics for the compounds we examined covers the entire region of their existence.Theoretical methodology and equations have been formulated to estimate the impact and friction sensitivity parameters of energetic materials and to evaluate the technological safety in use.The developed methodology is characterized by high-accuracy calculations and prediction of sensitivity parameters.展开更多
Underground space utilization and exploration is an irreversible trend for promoting sustainable development especially in megacities.Geotechnical engineering safety is always one of the most important issues in all p...Underground space utilization and exploration is an irreversible trend for promoting sustainable development especially in megacities.Geotechnical engineering safety is always one of the most important issues in all phases,including planning,design, construction and operation,of the underground project.Engineering geological and hydro-geological characteristics of the foundation rock mass展开更多
A high-precision evaluation of ultrasonic detection sensitivity for a micro-crack can be restricted by a corroded rough surface when the surface microtopography is of the same order of magnitude as the crack depth.In ...A high-precision evaluation of ultrasonic detection sensitivity for a micro-crack can be restricted by a corroded rough surface when the surface microtopography is of the same order of magnitude as the crack depth.In this study,a back-surface micro-crack is considered as a research target.A roughness-modified ultrasonic testing model for micro-cracks is established based on a multi-Gaussian beam model and the principle of phase-screen approximation.The echo signals of micro-cracks and noises corresponding to different rough front surfaces and rough back surfaces are obtained based on a reference reflector signal acquired from a two-dimensional simulation model.Further compari-son between the analytical and numerical models shows that the responses of micro-cracks under the effects of dif-ferent corroded rough surfaces can be accurately predicted.The numerical and analytical results show that the echo signal amplitude of the micro-crack decreases significantly with an increase in roughness,whereas the noise ampli-tude slightly increases.Moreover,the effect of the rough front surface on the echo signal of the micro-crack is greater than that of the rough back surface.When the root-mean-square(RMS)height of the surface microtopography is less than 15μm,the two rough surfaces have less influence on the echo signals detected by a focused transducer with a frequency of 5 MHz and diameter of 6 mm.A method for predicting and evaluating the detection accuracy of micro-cracks under different rough surfaces is proposed by combining the theoretical model and a finite element simulation.Then,a series of rough surface samples containing different micro-cracks are fabricated to experimentally validate the evaluation method.展开更多
Concrete-plate fences have been widely adopted for windblown sand control and mitigation along railways.However,the inclination angles of inserting the concrete plate with respect to the vertical direction,i.e.,straig...Concrete-plate fences have been widely adopted for windblown sand control and mitigation along railways.However,the inclination angles of inserting the concrete plate with respect to the vertical direction,i.e.,straight or obliquely inserted concrete plates(SIP or OIP),significantly influence the efficiency of sand-control.This study performs a comparative evaluation of the SIP and OIP sand-control fences using wind tunnel testing and field monitoring data collected from the Lanzhou–Wulumuqi High-Speed Railway Project.The results show that the fence’s ability to reduce the wind speed and the sand-retaining efficiency gradually weakens with the increasing wind speed.Compared with the SIP fence,the OIP fence has a better wind speed reduction capability,stronger ability to capture fine particles below the top of the fence;it is more efficient for sand-retaining and induces stronger eddy intensity.Generally,the wind tunnel test and field monitoring results are consistent,whereas wind tunnel tests incline to overestimate wind speed reduction and sand-control efficiency.The study also finds that the aeolian sand accumulated around the fence can weaken the protection efficiency,and hence cleaning the aeolian sand accumulated around the fence should be done periodically to ensure the designed functions.展开更多
The Formation Evaluation Tool (FET) introduced in the paper represents a new generation of formation evaluation systems developed and manufactured by China Oilfield Services Limited (COSL), CNOOC, using a FET tech...The Formation Evaluation Tool (FET) introduced in the paper represents a new generation of formation evaluation systems developed and manufactured by China Oilfield Services Limited (COSL), CNOOC, using a FET technology transfer from Crocker Research, Australia. The system has been applied successfully in the Bohai Sea and South China Sea. For instance, a multilayered oil and water system has been confirmed with the aid of accurate formation pressure tests, even in very thin beds and edge water reservoirs, overcoming the difficulty of determining this kind of oil-water and gas-water contacts. Moreover, the FET pumping and real-time fluid monitoring function allows acquiring a true sample of formation fluid unpolluted by drilling mud which plays an important role in determining the fluid properties of the target stratum and analyzing the fluid component. The principles and purpose of the Formation Evaluation Tool (FET) will be briefly introduced and successful examples of the application of the technology will be described in detail in this paper.展开更多
The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to it...The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.展开更多
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金supported by the Implementation Programs for Marine Renewable Energy Special Funds (GHME2012ZC02)
文摘Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.
文摘As the increasing popularity and complexity of Web applications and the emergence of their new characteristics, the testing and maintenance of large, complex Web applications are becoming more complex and difficult. Web applications generally contain lots of pages and are used by enormous users. Statistical testing is an effective way of ensuring their quality. Web usage can be accurately described by Markov chain which has been proved to be an ideal model for software statistical testing. The results of unit testing can be utilized in the latter stages, which is an important strategy for bottom-to-top integration testing, and the other improvement of extended Markov chain model (EMM) is to present the error type vector which is treated as a part of page node. this paper also proposes the algorithm for generating test cases of usage paths. Finally, optional usage reliability evaluation methods and an incremental usability regression testing model for testing and evaluation are presented. Key words statistical testing - evaluation for Web usability - extended Markov chain model (EMM) - Web log mining - reliability evaluation CLC number TP311. 5 Foundation item: Supported by the National Defence Research Project (No. 41315. 9. 2) and National Science and Technology Plan (2001BA102A04-02-03)Biography: MAO Cheng-ying (1978-), male, Ph.D. candidate, research direction: software testing. Research direction: advanced database system, software testing, component technology and data mining.
文摘Following publication of the original article[1],the authors identified an error in the article title.The first word ‘Review’ is added mistakenly by the typesetter.
基金S.-L.Chen acknowledges funding from the National Natural Science Foundation of China,No.61775134C.Tian acknowledges funding from the National Natural Science Foundation of China,No.61705216the Anhui Science and Technology Department,No.18030801138.
文摘Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial applications.This paper describes the basic principles of PA technology for NDT/E and its applications in recent years.PA technology for NDT/E includes the use of a modulated continuous-wave laser and a pulsed laser for PA wave excitation,PA-generated ultrasonic waves,and all-optical PA wave excitation and detection.PA technology for NDT/E has demonstrated broad applications,including the imaging of railway cracks and defects,the imaging of Li metal batteries,the measurements of the porosity and Young’s modulus,the detection of defects and damage in silicon wafers,and a visualization of underdrawings in paintings.
文摘This paper deals with the effect of grade entitlement on English programs in Japanese universities. For years, teachers and administrators have noted that even though Japan is one of the highest spending countries on English education, there has not been a commensurate increase in English ability. Most research to explain this disparity has thus far focused on methodology, class size and teacher qualifications. Recent research dealing with academic entitlement at US universities may offer an alternative explanation for some of the lack of success that Japanese universities have experienced. Ellen Greenberger, one of the author's of Self-entitled college students: Contributions of personality, parenting and motivational factors, which appeared in 2008 in The Journal of Youth and Adolescence claims that in recent years, the number of students appealing their grades and expecting to be rewarded for effort rather than results has increased. Greenberger's paper motivated this study. 200 Japanese students completed a survey that presented a number of grade scenarios. The students were asked, based on test grades and completed assignments, what grade a student should receive in each hypothetical situation. Similarly, full-time and part-time teachers were asked what grade they would give in each situation. This paper explains the different situations, students' and teachers' responses to the scenarios, and then discusses the implications for English education in Japan.
文摘An attempt was made to evaluate what is tested and how it is tested in the IELTS academic test from a thinking-based perspective. The analysis framework is an incorporation of Bloom's taxonomy of educational objectives and Bachman's classification of language knowledge. It is found that the IELTS test exemplifies an assessment of test-takers' language knowledge and cognitive processes.
文摘Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering.With the continuous development of transportation engineering,the maintenance and reinforcement of existing bridges are also being given more emphasis.In order to scientifically evaluate the effectiveness of bridge maintenance and reinforcement,this paper analyzes its detection and evaluation,including the significance,key points,and main methods of detection and evaluation.Therefore,this analysis aim to provide some reference for the maintenance and reinforcement and the quality improvement of bridge engineering.
文摘Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digital radiographic testing and fully evaluate the integrated system inspection ability of equipment,personnel,and processes,a scientific and standardized evaluation method to the system is very necessary.Here investigates the precedents of relevant non-destructive testing evaluation methods at home and abroad,considers the testing characteristics of DR equipment,develops a complete set of DR testing system evaluation procedures.It deeply studies the adaptability methods of program processes from defect production to slicing processing and data statistical calculation for digital radiographic testing evaluation.To check the repeatability and reliability of the detectable system,five process welds with 200 real metallographic defects were fabricated in the laboratory.From the detected results,the DR system has good repeatability in image quality,and the detectable defect size reaches 0.85 mm under achieving 90%detection probability at a confidence level of 95%,the error of detected defect length is±2 mm,and the error of detected defect localization is±5 mm.The qualitative and quantitative detection of defects are accurate and reliable.The test further confirmed the reliable detection ability of the DR detection system,and fully validated the scientific and practical evaluation method designed.The research on the evaluation test method can serve as an important link in the quality control system for the on-site application of digital ray equipment in long-distance pipelines.The designed program,test,and evaluation content can serve as an important basis for the formulation of relevant specifications or standards.
文摘1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.
文摘This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.
文摘The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other plastic process. The common test methods in laboratories are analyzed. It shows that though all those test methods can test the friction coefficient, the probe test method is most suitable for the research of friction and lubrication and the process in deep drawing, for this method is identical with the actual work condition either from the test principle or deformation status of the blank. Last the successful application in the deep drawing simulator newly developed the the probe method are intro- duced in detail.
基金supported by the National Natural Science Foundation of China(Grants No.41101250 and 51309031)the Chinese 12th Five-Year Science and Technology Support Program(Grant No.2012BAC06B00)
文摘The water quality in the Danjiangkou Reservoir has attracted considerable attention from the Chinese public and government since the announcement of the Middle Route of the South to North Water Diversion Project (SNWDP), which commenced transferring water in 2014. Integrated research on the evaluation, prediction, and protection of water quality in the Danjiangkou Reservoir was carried out in this study in order to improve environmental management. Based on 120 water samples, wherein 17 water quality indices were measured at 20 monitoring sites, a single factor evaluation method was used to evaluate the current status of water quality. The results show that the main indices influencing the water quality in the Danjiangkou Reservoir are total phosphorus (TP), permanganate index (CODM,), dissolved oxygen (DO), and five-day biochemical oxygen demand (BODs), and the concentrations of TP, BODs, ammonia nitrogen (NH3--N), CODM,, DO, and anionic surfactant (Surfa) do not reach the specified standard levels in the tributaries. Seasonal Mann--Kendall tests indicated that the CODMn concentration shows a highly significant increasing trend, and the TP concentration shows a significant increasing trend in the Danjiangkou Reservoir. The distribution of the main water quality indices in the Danjiangkou Reservoir was predicted using a two-dimensional water quality numerical model, and showed that the sphere of influence from the tributaries can spread across half of the Han Reservoir if the pollutants are not controlled. Cluster analysis (CA) results suggest that the Shending River is heavily polluted, that the Jianghe, Sihe, and Jianhe rivers are moderately polluted, and that they should be the focus of environmental remediation.
文摘Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instruments that underlie the assessment of their production and handling safety have been described.Studies of a large number of compounds have revealed relationships between their sensitivity parameters and structure of individual compounds and compositions.The range of change of physical and chemical characteristics for the compounds we examined covers the entire region of their existence.Theoretical methodology and equations have been formulated to estimate the impact and friction sensitivity parameters of energetic materials and to evaluate the technological safety in use.The developed methodology is characterized by high-accuracy calculations and prediction of sensitivity parameters.
文摘Underground space utilization and exploration is an irreversible trend for promoting sustainable development especially in megacities.Geotechnical engineering safety is always one of the most important issues in all phases,including planning,design, construction and operation,of the underground project.Engineering geological and hydro-geological characteristics of the foundation rock mass
基金Supported by the Key Research and Development Plan of Anhui Province(Grant No.202004a05020003)Anhui Provincial Natural Science Foundation(Grant Nos.2008085QE233,2008085J24)+1 种基金the Science and Technology Major Project of Anhui Province(Grant No.201903a05020010)the Doctoral Science and Technology Foundation of Hefei General Machinery Research Institute(Grant No.2019010383).
文摘A high-precision evaluation of ultrasonic detection sensitivity for a micro-crack can be restricted by a corroded rough surface when the surface microtopography is of the same order of magnitude as the crack depth.In this study,a back-surface micro-crack is considered as a research target.A roughness-modified ultrasonic testing model for micro-cracks is established based on a multi-Gaussian beam model and the principle of phase-screen approximation.The echo signals of micro-cracks and noises corresponding to different rough front surfaces and rough back surfaces are obtained based on a reference reflector signal acquired from a two-dimensional simulation model.Further compari-son between the analytical and numerical models shows that the responses of micro-cracks under the effects of dif-ferent corroded rough surfaces can be accurately predicted.The numerical and analytical results show that the echo signal amplitude of the micro-crack decreases significantly with an increase in roughness,whereas the noise ampli-tude slightly increases.Moreover,the effect of the rough front surface on the echo signal of the micro-crack is greater than that of the rough back surface.When the root-mean-square(RMS)height of the surface microtopography is less than 15μm,the two rough surfaces have less influence on the echo signals detected by a focused transducer with a frequency of 5 MHz and diameter of 6 mm.A method for predicting and evaluating the detection accuracy of micro-cracks under different rough surfaces is proposed by combining the theoretical model and a finite element simulation.Then,a series of rough surface samples containing different micro-cracks are fabricated to experimentally validate the evaluation method.
基金This research was supported by the Science and Technology Development Plan of China Railway Group Limited(Grant No.2015-kj035-g004-03).
文摘Concrete-plate fences have been widely adopted for windblown sand control and mitigation along railways.However,the inclination angles of inserting the concrete plate with respect to the vertical direction,i.e.,straight or obliquely inserted concrete plates(SIP or OIP),significantly influence the efficiency of sand-control.This study performs a comparative evaluation of the SIP and OIP sand-control fences using wind tunnel testing and field monitoring data collected from the Lanzhou–Wulumuqi High-Speed Railway Project.The results show that the fence’s ability to reduce the wind speed and the sand-retaining efficiency gradually weakens with the increasing wind speed.Compared with the SIP fence,the OIP fence has a better wind speed reduction capability,stronger ability to capture fine particles below the top of the fence;it is more efficient for sand-retaining and induces stronger eddy intensity.Generally,the wind tunnel test and field monitoring results are consistent,whereas wind tunnel tests incline to overestimate wind speed reduction and sand-control efficiency.The study also finds that the aeolian sand accumulated around the fence can weaken the protection efficiency,and hence cleaning the aeolian sand accumulated around the fence should be done periodically to ensure the designed functions.
文摘The Formation Evaluation Tool (FET) introduced in the paper represents a new generation of formation evaluation systems developed and manufactured by China Oilfield Services Limited (COSL), CNOOC, using a FET technology transfer from Crocker Research, Australia. The system has been applied successfully in the Bohai Sea and South China Sea. For instance, a multilayered oil and water system has been confirmed with the aid of accurate formation pressure tests, even in very thin beds and edge water reservoirs, overcoming the difficulty of determining this kind of oil-water and gas-water contacts. Moreover, the FET pumping and real-time fluid monitoring function allows acquiring a true sample of formation fluid unpolluted by drilling mud which plays an important role in determining the fluid properties of the target stratum and analyzing the fluid component. The principles and purpose of the Formation Evaluation Tool (FET) will be briefly introduced and successful examples of the application of the technology will be described in detail in this paper.
基金National Natural Science Foundation of China(Grant Nos.52275096,52005108,52275523)Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone High-end Equipment Vibration and Noise Detection and Fault Diagnosis Collaborative Innovation Platform ProjectFujian Provincial Major Research Project(Grant No.2022HZ024005)。
文摘The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.