Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ...Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.展开更多
Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects.It may lead to spalling of concrete cover,reduction of section’s capacity and can alter the dynamic properties.For...Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects.It may lead to spalling of concrete cover,reduction of section’s capacity and can alter the dynamic properties.For the dynamic properties,natural frequency is to be a reliable indicator of structural integrity that can be utilized in non-destructive corrosion assessment.Although the correlation between natural frequency and corrosion damage has been reflected in different experimental programs,few attempts have been made to investigate this relationship in forward modeling and/or structural health monitoring techniques.This can be attributed to the limited available data,the complex nature of corrosion,and the involvement of multidisciplinaryfields.Therefore,this study presents a numerical attempt to simulate the effect of corrosion damage on the natural frequency of the structure.The approach relies on simulating the time history response of the structure using a modified Bouc-Wen model that incorporates the nonlinear effects of corrosion.Then,modal analysis is utilized to assess the change in dynamic properties in the frequency domain.Tofinish up,regression algorithms are employed tofind optimal relationship between involved parameters,including corrosion damage as input,and natural frequency as output.The efficiency of the suggested framework is illustrated in thirteen buildings with cantilevered column lateral force-resisting system and different levels of corrosion.展开更多
A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase w...A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.展开更多
To solve the problems of abnormal larger, abnormal lower or even negative of target yield and fertilizing amount recommended by part of non-typical fertilizer effect equations using agricultural experiments and statis...To solve the problems of abnormal larger, abnormal lower or even negative of target yield and fertilizing amount recommended by part of non-typical fertilizer effect equations using agricultural experiments and statistical analysis software,Yangzhou analyzer(2.2), regression analysis of Excel, which objected to local actual production, the study adopted the principle and method of basic knowledge and the frequency of using probability theory, and carried out statistical analysis on the rape field fertilizer experiment data by frequency analysis method, the rape yield after optimizing fertilizing amount was 1 732.4 kg/hm^2, the ranges of N, P and K optimal combinations were: N=210.36-149.64 kg/hm^2,P2O5=81.89-58.11 kg/hm^2, K2O=81.89-58.11 kg/hm^2,which was consistent with local actual production. This study was based on frequency analysis, using weighted average method to determine the production combinations of different yield objectives, hereinto, the combinations with high yield, high frequency of occurrence(dependable crop) and fertilizer-saving were viewed as the optimizing production measures, and they had the merits of increasing fertilization decision-making information, reducing or avoiding the risk of small probability event. The results of this study can solve the problem of abnormal values fertilizing amount and target yield recommended by non-typical fertilizer effect function, which did not accord with local actual production, caused by Yangzhou analyzer(2.2), regression analysis of Excel, and DPS statistical analysis software. For the fertilizer effect function equation established by regression analysis which did not reach significance level using variance analysis, whether the method can be adapted to for carrying out fertilization decision-making, recommending optimization combinations of N, P and K fertilizers and yield under optimized fertilizing amount should be further researched in future working practice.展开更多
To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experimen...To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades.展开更多
An accelerated decay test and a natural decay test were conducted synchronically to explore the strength degradation of decaying wood members under long-term exposure to natural environment.A natural decay test was ca...An accelerated decay test and a natural decay test were conducted synchronically to explore the strength degradation of decaying wood members under long-term exposure to natural environment.A natural decay test was carried out to measure the bending strength,compressive strength parallel to grain and modulus of elasticity of the wood members,with 6 groups of specimens decayed in natural environment for 3 to 18 months respectively.To compare with corresponding decay test,in which 6 other groups of specimens were measured under accelerated conditions.The experimental data collected were evaluated by Pearson productmoment for the correlation.The results indicate that the mechanical properties of the accelerated decay were highly correlated with those in natural environment,both of which decreased in the same trend.Under the given test conditions,the mean value of the accelerated decay test data were curve-fitted to achieve the time-dependent degradation model of the bending strength,the compressive strength parallel to grain,as well as the modulus of elasticity.Due to the high correlation,the acceleration shift factors(ASF)of the two tests were derived,where the bending strength of 2.934,the compressive strength parallel to grain of 2.519 and the elastic modulus of 2.346 were employed to formulate the strength degradation models in the long-term natural environment.The results verify that the exponential functionσ=σ0e^(-βt)enables to exactly capture the degradation of the mechanical properties of wood members decayed in natural environment.展开更多
A significant amount of research is concerned with dynamic modal parameters for damage detection of structural conditions due to their simplicity in use and feasibility.However,their use for damage detection should be...A significant amount of research is concerned with dynamic modal parameters for damage detection of structural conditions due to their simplicity in use and feasibility.However,their use for damage detection should be performed with special attention,particularly in operational and environmental conditions subjected to temperature changes.Beams in construction industries experience different loading types,such as temperature changes leading to crack initiation and propagation.Changed physical and dynamic properties such as natural frequencies and mode shapes indicate that damage has occurred within the structures.In this study,vibration analysis of cantilever and cantilever simply supported beams has been carried out on intact and damaged beams to investigate the coupled effect of temperature changes and damage depth on natural frequencies.A numerical analysis of beams is completed using ANSYS software.The results of numerical simulation are validated using two other studies from literature.Numerical results revealed that in order to perform a successful damage assessment using the frequency shift,the vibration modes should be selected properly.In addition,an increase in temperature results in a decrease in structural frequencies.The assessment of the effect of damage depth on natural frequencies also confirms that when damage depth is increased,there is a significant decrease in natural frequency responses.展开更多
The structural design, analysis and experimental verification of a novel planar parallel robot that includes parallelogram linkages are reported in this paper. A design methodology combining finite element analysis (...The structural design, analysis and experimental verification of a novel planar parallel robot that includes parallelogram linkages are reported in this paper. A design methodology combining finite element analysis (FEA) and flexible dynamics is employed in the analysis. The appropriate natural frequencies of robot throughout workspaee are predicted, and the effects of payload, flexibility of joints, cross section and orientations of robot on the natural frequency are analyzed by simulation. Extensive structural vibration experiments with the completed manipulator confirm the predicted structural vibration characteristics throughout the workspace. The experiment also proves the robot's performance under a fuzzy self-tuning PI controller.展开更多
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr...Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.展开更多
Acoustic Emission Testing (AT) is one of the major non-destructive testing methods used for severity evaluation of structures. Amplitude distributions of AE signals are characterized by b-value and the value is mainly...Acoustic Emission Testing (AT) is one of the major non-destructive testing methods used for severity evaluation of structures. Amplitude distributions of AE signals are characterized by b-value and the value is mainly used for the severity evaluation of concrete structures until now. The value is assumed to be independent with propagation distance between acoustic emission sources to AE sensors. We evaluate the influence of the wide frequency band encountered in the fracture behavior of glass fiber reinforced plastic (GFRP) on the b-value analysis. In tensile tests, the b-value was determined from an acoustic emission (AE) source generated near a centered hole in a specimen of GFRP. At 15 mm from the hole, the b-value analysis indicated a decreasing trend with increasing tensile stress. At a propagation length of 45 mm, farthest from the hole, a?small number of AE signals were received. The attenuation is more rapid for high-frequency AE signals. Thus, the amplitude distribution bandwidth is wide and the b-value changes. This change in b-value for GFRPs is investigated by analyzing the spectral components of the AE signals. For a single-frequency AE source, the b-value is unchanged with propagation length. In contrast, multiple-frequency AE sources produce changes in b-value proportional to the fraction of each spectral component in the received signal. This is due to the frequency dependence of the attenuation with propagation length.?From these results, the b-value analysis cannot be applied to considering frequency dependence of AE attenuation.展开更多
A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of ...A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.展开更多
To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the para...To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the parallel mechanism were investigated.First,the active branched chains and screw sliders were considered as spatial beam elements and plane beam element models,respectively,and the dynamic equations of each element model were derived using the Lagrange method.Second,the equations of the 5-PSS/UPU parallel mechanism were obtained according to the kinematic coupling relationship between the active branched chains and moving platform.Finally,based on the parallel mechanism dynamic equations,the natural frequency distribution of the 5-PSS/UPU parallel mechanism in the working space and elastic displacement of the moving platform were obtained.The results show that the natural frequency of the 5-PSS/UPU parallel mechanism under a given motion situation is greater than its operating frequency.The maximum position error is -0.096 mm in direction Y,and the maximum orientation error is -0.29°around the X-axis.The study provides important information for analyzing the dynamic performance,dynamic optimization design,and dynamic control of the 5-PSS/UPU parallel mechanism with elastically active branched chains.展开更多
A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using...A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KRand cross-coupling stiffness KLRof which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements(displacements and rotations), the values of KL, KRand KLRwere obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness.展开更多
The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was c...The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.展开更多
The present paper develops a new method for damage localization and severity estimation based on the employment of modal strain energy. This method is able to determine the damage locations and estimate their severiti...The present paper develops a new method for damage localization and severity estimation based on the employment of modal strain energy. This method is able to determine the damage locations and estimate their severities, requiring only the information about the changes of a few lower natural frequencies. First, a damage quantification method is formulated and iterative approach is adopted for determining the damage extent. Then a damage localization algorithm is proposed, in which a damage indicator is formulated where unity value corresponds to the true damage scenario. Finally, numerical studies and model tests are conducted to demonstrate the effectiveness of the developed algorithm.展开更多
The dipole magnet of the China Spallation Neutron Source(CSNS) Rapid-cycling Synchrotron(RCS) will be operated at a 25 Hz sinusoidal alternating current which causes severe vibration.The vibration will influence the l...The dipole magnet of the China Spallation Neutron Source(CSNS) Rapid-cycling Synchrotron(RCS) will be operated at a 25 Hz sinusoidal alternating current which causes severe vibration.The vibration will influence the long-term safety and reliable operation of the dipole magnet.By taking the dipole magnet and magnetic measurement girder as specific model system,a method for analyzing and studying the dynamic characteristic of the system is put forward by combining theoretical calculation with experimental testing.This paper established the mechanical model of the system,and the top six step natural frequency and vibration mode were obtained through theoretical modal analysis(ANSYS).Then according to testing modal analysis,the natural frequency,damping ratios and vibration mode of the system structure were obtained too.The theoretical modal analysis results coincide with the experimental testing results.Besides,the 6th step natural frequency is close to the exciting frequency of the magnet,so the resonance phenomenon may take place at the actual working conditions.The dynamic characteristic data of the structure can provide an analysis basis for the further study and the formal dipole magnet girder optimal design of RCS.展开更多
A concrete gravity base structure may not be suitable for offshore weak soil because of its heavy weight. Therefore, a conceptual model for a concrete offshore wind turbine structure suitable for weak soils is propose...A concrete gravity base structure may not be suitable for offshore weak soil because of its heavy weight. Therefore, a conceptual model for a concrete offshore wind turbine structure suitable for weak soils is proposed. The proposed model is composed of a prestressed concrete(PSC) supported by a pile foundation. For a three-dimensional analysis of the large concrete structure, wave pressures based on the diffraction wave theory are developed using a three-dimensional solid finite element method. Static and dynamic analyses were performed to achieve the conceptual model of a PSC structure subjected to ocean environmental loads and a 5-MW turbine load on southwest coast in Korea. From the analysis, the maximum displacement and stresses of the proposed model did not exceed the allowable values from design standard, and the first mode of natural frequency of the structure was in a safe range to avoid resonance. The proposed model has enough structural stability to withstand external loads, and it is expected to be used in locations suitable for concrete gravity structures.展开更多
Based on the recent development of renewable energy utilization technology,in addition to centralized photovol-taic power plants,distributed photovoltaic power generation systems represented by building-integrated pho...Based on the recent development of renewable energy utilization technology,in addition to centralized photovol-taic power plants,distributed photovoltaic power generation systems represented by building-integrated photo-voltaic systems are frequently employed for power supply.Therefore,in the architectural design,the double-glass photovoltaic module used in the integrated photovoltaic building system puts forward a higher load-bearing capa-city requirement and the corresponding simplified method of carrying capacity check.This article focuses on the simplified method of checking the bearing capacity of the four-sided simply supported double-glass photovoltaic module.First,the principle of equivalent stiffness is used to calculate the effective thickness.Then,the rationality of this approach is verified by comparing the bending states of sandwich panels under different shear moduli.The double-glass photovoltaic module is equivalent to a single-layer board,and its effectiveness is verified by compar-ing the impact test results of the double-glass photovoltaic module with the results of the single-layer board.But the comparison with the test results shows that,from the perspective of architectural design,the effective thick-ness results in this paper can ensure that the building structure has sufficient bearing capacity,but the four-side simply supported boundary theory cannot fully reflect the calculation of the bearing capacity of the four-side clamped double-glass photovoltaic module.展开更多
Using environmental random vibration as the excitation,traditional accelerometer method,non-contact video method and non-contact laser method were employed to determine the natural frequency of Kunyu River footbridge....Using environmental random vibration as the excitation,traditional accelerometer method,non-contact video method and non-contact laser method were employed to determine the natural frequency of Kunyu River footbridge.All the results of these three methods are close to 2.70 Hz,which are concordant with each other and hence credible.展开更多
In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The ...In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.展开更多
基金supported by the National Natural Science Foundation of China (No.51975293)Aeronautical Science Foundation of China (No.2019ZD052010)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20230502)。
文摘Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.
基金The authors received joint funding for this project from the National Council for Scientific Research-Lebanon(CNRSL)and the Beirut Arab University.Research Project(12-05-2018).
文摘Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects.It may lead to spalling of concrete cover,reduction of section’s capacity and can alter the dynamic properties.For the dynamic properties,natural frequency is to be a reliable indicator of structural integrity that can be utilized in non-destructive corrosion assessment.Although the correlation between natural frequency and corrosion damage has been reflected in different experimental programs,few attempts have been made to investigate this relationship in forward modeling and/or structural health monitoring techniques.This can be attributed to the limited available data,the complex nature of corrosion,and the involvement of multidisciplinaryfields.Therefore,this study presents a numerical attempt to simulate the effect of corrosion damage on the natural frequency of the structure.The approach relies on simulating the time history response of the structure using a modified Bouc-Wen model that incorporates the nonlinear effects of corrosion.Then,modal analysis is utilized to assess the change in dynamic properties in the frequency domain.Tofinish up,regression algorithms are employed tofind optimal relationship between involved parameters,including corrosion damage as input,and natural frequency as output.The efficiency of the suggested framework is illustrated in thirteen buildings with cantilevered column lateral force-resisting system and different levels of corrosion.
基金supported by the National Natural Science Foundation of China (No.50808090)
文摘A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.
基金Supported by Fiscal Subsidy Project Fund of National Soil Testing and Formulated Fertilization(Yun Cai Nong[2009]2045)~~
文摘To solve the problems of abnormal larger, abnormal lower or even negative of target yield and fertilizing amount recommended by part of non-typical fertilizer effect equations using agricultural experiments and statistical analysis software,Yangzhou analyzer(2.2), regression analysis of Excel, which objected to local actual production, the study adopted the principle and method of basic knowledge and the frequency of using probability theory, and carried out statistical analysis on the rape field fertilizer experiment data by frequency analysis method, the rape yield after optimizing fertilizing amount was 1 732.4 kg/hm^2, the ranges of N, P and K optimal combinations were: N=210.36-149.64 kg/hm^2,P2O5=81.89-58.11 kg/hm^2, K2O=81.89-58.11 kg/hm^2,which was consistent with local actual production. This study was based on frequency analysis, using weighted average method to determine the production combinations of different yield objectives, hereinto, the combinations with high yield, high frequency of occurrence(dependable crop) and fertilizer-saving were viewed as the optimizing production measures, and they had the merits of increasing fertilization decision-making information, reducing or avoiding the risk of small probability event. The results of this study can solve the problem of abnormal values fertilizing amount and target yield recommended by non-typical fertilizer effect function, which did not accord with local actual production, caused by Yangzhou analyzer(2.2), regression analysis of Excel, and DPS statistical analysis software. For the fertilizer effect function equation established by regression analysis which did not reach significance level using variance analysis, whether the method can be adapted to for carrying out fertilization decision-making, recommending optimization combinations of N, P and K fertilizers and yield under optimized fertilizing amount should be further researched in future working practice.
基金supported by the National Natural Science Foundation Project(Nos.51966018 and 51466015)the Key Research&Development Program of Xinjiang(Grant No.2022B01003).
文摘To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades.
基金supported by a grant from the National Natural Science Foundation of China(No.51208399)Natural Science Foundation of Hubei province of China(No.2018CFB645)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQJJ201706).
文摘An accelerated decay test and a natural decay test were conducted synchronically to explore the strength degradation of decaying wood members under long-term exposure to natural environment.A natural decay test was carried out to measure the bending strength,compressive strength parallel to grain and modulus of elasticity of the wood members,with 6 groups of specimens decayed in natural environment for 3 to 18 months respectively.To compare with corresponding decay test,in which 6 other groups of specimens were measured under accelerated conditions.The experimental data collected were evaluated by Pearson productmoment for the correlation.The results indicate that the mechanical properties of the accelerated decay were highly correlated with those in natural environment,both of which decreased in the same trend.Under the given test conditions,the mean value of the accelerated decay test data were curve-fitted to achieve the time-dependent degradation model of the bending strength,the compressive strength parallel to grain,as well as the modulus of elasticity.Due to the high correlation,the acceleration shift factors(ASF)of the two tests were derived,where the bending strength of 2.934,the compressive strength parallel to grain of 2.519 and the elastic modulus of 2.346 were employed to formulate the strength degradation models in the long-term natural environment.The results verify that the exponential functionσ=σ0e^(-βt)enables to exactly capture the degradation of the mechanical properties of wood members decayed in natural environment.
基金This work is partially supported by the Anhui Provincial International Joint Research Center of Data Diagnosis and Smart Maintenance on Bridge Structures(No.2021AHGHZD01)the Nanjing Science and Technology Project(No.202002014)the Nantong Science and Technology Opening Cooperation Project in 2021(No.BW2021001).
文摘A significant amount of research is concerned with dynamic modal parameters for damage detection of structural conditions due to their simplicity in use and feasibility.However,their use for damage detection should be performed with special attention,particularly in operational and environmental conditions subjected to temperature changes.Beams in construction industries experience different loading types,such as temperature changes leading to crack initiation and propagation.Changed physical and dynamic properties such as natural frequencies and mode shapes indicate that damage has occurred within the structures.In this study,vibration analysis of cantilever and cantilever simply supported beams has been carried out on intact and damaged beams to investigate the coupled effect of temperature changes and damage depth on natural frequencies.A numerical analysis of beams is completed using ANSYS software.The results of numerical simulation are validated using two other studies from literature.Numerical results revealed that in order to perform a successful damage assessment using the frequency shift,the vibration modes should be selected properly.In addition,an increase in temperature results in a decrease in structural frequencies.The assessment of the effect of damage depth on natural frequencies also confirms that when damage depth is increased,there is a significant decrease in natural frequency responses.
文摘The structural design, analysis and experimental verification of a novel planar parallel robot that includes parallelogram linkages are reported in this paper. A design methodology combining finite element analysis (FEA) and flexible dynamics is employed in the analysis. The appropriate natural frequencies of robot throughout workspaee are predicted, and the effects of payload, flexibility of joints, cross section and orientations of robot on the natural frequency are analyzed by simulation. Extensive structural vibration experiments with the completed manipulator confirm the predicted structural vibration characteristics throughout the workspace. The experiment also proves the robot's performance under a fuzzy self-tuning PI controller.
文摘Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.
文摘Acoustic Emission Testing (AT) is one of the major non-destructive testing methods used for severity evaluation of structures. Amplitude distributions of AE signals are characterized by b-value and the value is mainly used for the severity evaluation of concrete structures until now. The value is assumed to be independent with propagation distance between acoustic emission sources to AE sensors. We evaluate the influence of the wide frequency band encountered in the fracture behavior of glass fiber reinforced plastic (GFRP) on the b-value analysis. In tensile tests, the b-value was determined from an acoustic emission (AE) source generated near a centered hole in a specimen of GFRP. At 15 mm from the hole, the b-value analysis indicated a decreasing trend with increasing tensile stress. At a propagation length of 45 mm, farthest from the hole, a?small number of AE signals were received. The attenuation is more rapid for high-frequency AE signals. Thus, the amplitude distribution bandwidth is wide and the b-value changes. This change in b-value for GFRPs is investigated by analyzing the spectral components of the AE signals. For a single-frequency AE source, the b-value is unchanged with propagation length. In contrast, multiple-frequency AE sources produce changes in b-value proportional to the fraction of each spectral component in the received signal. This is due to the frequency dependence of the attenuation with propagation length.?From these results, the b-value analysis cannot be applied to considering frequency dependence of AE attenuation.
基金supported by the Key Project of Science and Technology in an Action of Shanghai Scientific and Technological Innovation (No. 09231201600)the National Natural Science Foundation of China(No. 50823004)the Science and Technology Department of Sichuan Province
文摘A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.
基金Supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18E050003)National Natural Science Foundation of China (Grant Nos. 51975523,51905481)+1 种基金Postdoctoral Preferred Funding Project of Zhejiang Province (Grant No. zj2019019)Open Foundation of the Key Laboratory of E&M,Ministry of Education&Zhejiang Province (Grant No. EM2019120102)
文摘To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the parallel mechanism were investigated.First,the active branched chains and screw sliders were considered as spatial beam elements and plane beam element models,respectively,and the dynamic equations of each element model were derived using the Lagrange method.Second,the equations of the 5-PSS/UPU parallel mechanism were obtained according to the kinematic coupling relationship between the active branched chains and moving platform.Finally,based on the parallel mechanism dynamic equations,the natural frequency distribution of the 5-PSS/UPU parallel mechanism in the working space and elastic displacement of the moving platform were obtained.The results show that the natural frequency of the 5-PSS/UPU parallel mechanism under a given motion situation is greater than its operating frequency.The maximum position error is -0.096 mm in direction Y,and the maximum orientation error is -0.29°around the X-axis.The study provides important information for analyzing the dynamic performance,dynamic optimization design,and dynamic control of the 5-PSS/UPU parallel mechanism with elastically active branched chains.
文摘A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KRand cross-coupling stiffness KLRof which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements(displacements and rotations), the values of KL, KRand KLRwere obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness.
文摘The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.
基金supported by the National Natural Science Foundation of China (50909088, 51010009)Science & Technology Development Project of Qingdao (09-1-3-18-jch)Program for New Century Excellent Talents in University (NCET-10-0762)
文摘The present paper develops a new method for damage localization and severity estimation based on the employment of modal strain energy. This method is able to determine the damage locations and estimate their severities, requiring only the information about the changes of a few lower natural frequencies. First, a damage quantification method is formulated and iterative approach is adopted for determining the damage extent. Then a damage localization algorithm is proposed, in which a damage indicator is formulated where unity value corresponds to the true damage scenario. Finally, numerical studies and model tests are conducted to demonstrate the effectiveness of the developed algorithm.
文摘The dipole magnet of the China Spallation Neutron Source(CSNS) Rapid-cycling Synchrotron(RCS) will be operated at a 25 Hz sinusoidal alternating current which causes severe vibration.The vibration will influence the long-term safety and reliable operation of the dipole magnet.By taking the dipole magnet and magnetic measurement girder as specific model system,a method for analyzing and studying the dynamic characteristic of the system is put forward by combining theoretical calculation with experimental testing.This paper established the mechanical model of the system,and the top six step natural frequency and vibration mode were obtained through theoretical modal analysis(ANSYS).Then according to testing modal analysis,the natural frequency,damping ratios and vibration mode of the system structure were obtained too.The theoretical modal analysis results coincide with the experimental testing results.Besides,the 6th step natural frequency is close to the exciting frequency of the magnet,so the resonance phenomenon may take place at the actual working conditions.The dynamic characteristic data of the structure can provide an analysis basis for the further study and the formal dipole magnet girder optimal design of RCS.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and Ministry of Trade,Industry & Energy(MOTIE) of the Republic of Korea(No.20153030023830)
文摘A concrete gravity base structure may not be suitable for offshore weak soil because of its heavy weight. Therefore, a conceptual model for a concrete offshore wind turbine structure suitable for weak soils is proposed. The proposed model is composed of a prestressed concrete(PSC) supported by a pile foundation. For a three-dimensional analysis of the large concrete structure, wave pressures based on the diffraction wave theory are developed using a three-dimensional solid finite element method. Static and dynamic analyses were performed to achieve the conceptual model of a PSC structure subjected to ocean environmental loads and a 5-MW turbine load on southwest coast in Korea. From the analysis, the maximum displacement and stresses of the proposed model did not exceed the allowable values from design standard, and the first mode of natural frequency of the structure was in a safe range to avoid resonance. The proposed model has enough structural stability to withstand external loads, and it is expected to be used in locations suitable for concrete gravity structures.
基金This research was funded by the National Key Research and Development Program of China:Newton Fund-China-UK Research and Innovations Bridges(No.2016YFE0124500).
文摘Based on the recent development of renewable energy utilization technology,in addition to centralized photovol-taic power plants,distributed photovoltaic power generation systems represented by building-integrated photo-voltaic systems are frequently employed for power supply.Therefore,in the architectural design,the double-glass photovoltaic module used in the integrated photovoltaic building system puts forward a higher load-bearing capa-city requirement and the corresponding simplified method of carrying capacity check.This article focuses on the simplified method of checking the bearing capacity of the four-sided simply supported double-glass photovoltaic module.First,the principle of equivalent stiffness is used to calculate the effective thickness.Then,the rationality of this approach is verified by comparing the bending states of sandwich panels under different shear moduli.The double-glass photovoltaic module is equivalent to a single-layer board,and its effectiveness is verified by compar-ing the impact test results of the double-glass photovoltaic module with the results of the single-layer board.But the comparison with the test results shows that,from the perspective of architectural design,the effective thick-ness results in this paper can ensure that the building structure has sufficient bearing capacity,but the four-side simply supported boundary theory cannot fully reflect the calculation of the bearing capacity of the four-side clamped double-glass photovoltaic module.
基金Ministry of Science and Technology of China for sponsoring the"Cooperation Research on the Dynamic Safety and Serviceability of Public Structures Servicing for Human"(No.2010DFB74280)between Beijing Institute of Technology and Ruhr-University Bochum
文摘Using environmental random vibration as the excitation,traditional accelerometer method,non-contact video method and non-contact laser method were employed to determine the natural frequency of Kunyu River footbridge.All the results of these three methods are close to 2.70 Hz,which are concordant with each other and hence credible.
文摘In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.