Platinum-based alloy nanoparticles are the most attractive catalysts for the oxygen reduction reaction at present,but an in-depth understanding of the relationship between their short-range structural information and ...Platinum-based alloy nanoparticles are the most attractive catalysts for the oxygen reduction reaction at present,but an in-depth understanding of the relationship between their short-range structural information and catalytic performance is still lacking.Herein,we present a synthetic strategy that uses transition-metal oxide-assisted thermal diffusion.PtCo/C catalysts with localized tetragonal distortion were obtained by controlling the thermal diffusion process of transition-metal elements.This localized structural distortion induced a significant strain effect on the nanoparticle surface,which further shortened the length of the Pt-Pt bond,improved the electronic state of the Pt surface,and enhanced the performance of the catalyst.PtCo/C catalysts with special short-range structures achieved excellent mass activity(2.27 Amg_(Pt)^(-1))and specific activity(3.34 A cm^(-2)).In addition,the localized tetragonal distortion-induced surface compression of the Pt skin improved the stability of the catalyst.The mass activity decreased by only 13%after 30,000 cycles.Enhanced catalyst activity and excellent durability have also been demonstrated in the proton exchange membrane fuel cell configuration.This study provides valuable insights into the development of advanced Pt-based nanocatalysts and paves the way for reducing noble-metal loading and increasing the catalytic activity and catalyst stability.展开更多
A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulf...A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of fiat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature.展开更多
This paper gives the general expressions for the compliance s′ijkl, Young's modulus E(hkl) and Poisson's ratio v(hkl, θ) along arbitrary loading direction [hkl] for tetragonal crystals. The representation surf...This paper gives the general expressions for the compliance s′ijkl, Young's modulus E(hkl) and Poisson's ratio v(hkl, θ) along arbitrary loading direction [hkl] for tetragonal crystals. The representation surface for which the length of the radius vector in the [hkl] direction equals E(hkl) and representation curve for which the length of the radius vector with angle θ deviated from the reference directions [001^-], [100], [001^-], [101^-] and [112^-] equals v(100, θ), v(001, θ), v(110,θ), v(101,θ) and v(111, θ) respectively, are constructed for nine tetragonal crystals (ammonium dihydrogen arsenate, ammonium dihydrogen phosphate, barium titanate, indium, nickel sulfate, potassium dihydrogen arsenate, potassium dihydrogen phosphate, tin and zircon). The characteristics of them are analysed in detail.展开更多
In order to found new dielectrics ceramics in tungsten bronze structure, unfilled tungsten bronze(TB) ceramics with nominal formula Ba4PrFe(0.5)Nb(9.5)O(30) were prepared by the solid state reaction method. Th...In order to found new dielectrics ceramics in tungsten bronze structure, unfilled tungsten bronze(TB) ceramics with nominal formula Ba4PrFe(0.5)Nb(9.5)O(30) were prepared by the solid state reaction method. The microstructure and dielectric properties were studied using powder X-ray diffraction, field emission scanning electron microscope, and variable temperature dielectric test system. The results show that the ceramics have a single phase and belong to the space group of P4bm with the cell of a = b = 12.4839(3) ?, c = 3.9409(5) ?, V = 614.192(2) ?3. The frequency dependent dielectrics properties show that the ceramics have a Debye-like relaxation at room temperature, while the temperature dependent dielectrics properties indicate that the ceramics are a relaxor and the relaxation is due to the nanopolars and oxygen vacancies. The ceramics have a potential application in electronic ceramics as temperature-stable multilayer ceramic capacitors.展开更多
The carrier mobility of two-dimensional tetragonal carbon allotrope (T-CA) from porous graphene is investigated by first-principles calculations. T-CA can be constructed from divacancy and Stone-Thrower--Wales defec...The carrier mobility of two-dimensional tetragonal carbon allotrope (T-CA) from porous graphene is investigated by first-principles calculations. T-CA can be constructed from divacancy and Stone-Thrower--Wales defects from graphene. T-CA is a direct semiconductor with a band gap of 0.4 eV at F point. T-CA possesses a high carrier mobility of the order of 104 cm2V-ls-1. As our study demonstrates, T-CA has potential applications for next-generation electronic materials.展开更多
Grinding-induced tm phase transformation and the resultant texture in ceria-yttria-doped tetragonal zirconia polycrystals with varied tetragonality have been studied by XRD. It is observed that the reversible tm phase...Grinding-induced tm phase transformation and the resultant texture in ceria-yttria-doped tetragonal zirconia polycrystals with varied tetragonality have been studied by XRD. It is observed that the reversible tm phase transformation occurs during grinding and the intensity ratio of I(002)t/I(200)t increases with the transformability. The author proposes that the texture induced by grinding at low temperatures is due to the tetragonal variant reorientation via cyclic,reversible tm phase transformation, termed 'transformational domain switching', instead of the ferroelastic one展开更多
The recently discovered tetragonal, monoclinie and orthorhombic polymorphs of M3N4 (M=C, Si, Sn) are in- vestigated by using first-principles calculations. A set of anisotropic elastic quantities, i.e., the bulk and...The recently discovered tetragonal, monoclinie and orthorhombic polymorphs of M3N4 (M=C, Si, Sn) are in- vestigated by using first-principles calculations. A set of anisotropic elastic quantities, i.e., the bulk and shear moduli, Young's modulus, Poisson ratio, H/G ratio and rickets hardness of M3N4 (M=C, Si, Sn) are predicted. The quasi-harmonic Debye model, assuming that the solids are isotopic, may lead to large errors for the non-cubic crystals. The thermal effects are obtained by the traditional quasi-harmonic approach. The dependences of heat capacity, thermal expansion coefficient and Debye temperature on temperature and pressure are systematically discussed in the pressure range of 0 IOGPa and in the temperature range of 0-1100 K. More importantly, o- C3N4 is a negative thermal expansion material. Our results may have important consequences in shaping the understanding of the fundamental properties of these binary nitrides.展开更多
In this report, the analytical expression of Coulombic interaction between a spherical nanoparticle and a tetragonal nanorod is derived. To evaluate the Coulombic interaction in the oriented attachment growth of tetra...In this report, the analytical expression of Coulombic interaction between a spherical nanoparticle and a tetragonal nanorod is derived. To evaluate the Coulombic interaction in the oriented attachment growth of tetragonal nanorods, we analyze the correlation between the Coulombic interaction and the important growth parameters, including: nanoparticle- nanorod separation, aspect ratio of the nanorods, and surface charge density. Our work opens up the opportunity to investi-gate interparticle interactions in the oriented attachment growth of tetragonal nanorods.展开更多
Structural, elastic and electronic properties of tetragonal Hf02 at applied hydrostatic pressure up to 50 GPa have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principl...Structural, elastic and electronic properties of tetragonal Hf02 at applied hydrostatic pressure up to 50 GPa have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density- functional theory (DFT). The calculated ground-state properties are in good agreement with previous theoretical and experimental data. Six independent elastic constants of tetragonal Hf02 have been calculated at zero pressure and high pressure. From the obtained elastic constants, the bulk, shear and Young's modulus, Poisson's coefficients, acoustic velocity and Debye temperature have been calculated at the applied pressure. Band structure shows that tetragonal Hf02 is an indirect band gap. The variation of the gap versus pressure is well fitted to a quadratic function.展开更多
We report 7SAs NMR studies on single crystals of rare-earth doped iron pnictide superconductor Ca1-xPrxFe2As2. In both cases of x = 0.075, 0.15, a large increase of Vq upon cooling is consistent with the tetragonal-co...We report 7SAs NMR studies on single crystals of rare-earth doped iron pnictide superconductor Ca1-xPrxFe2As2. In both cases of x = 0.075, 0.15, a large increase of Vq upon cooling is consistent with the tetragonal-collapsed tetragonal structure transition. A sharp drop of the Knight shift is also seen just below the structure transition, which suggests the quenching of Fe local magnetism, and therefore offers important understanding of the collapsed tetragonal phase. At even low temperatures, the 1/75 T1 is enhanced and forms a peak at T ≈ 25 K, which may be caused by the magnetic ordering of the Pr3+ moments or soin dynamics of mobile domain walls.展开更多
By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM...By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM and XPS confirm that the expected sample was produced.GITT results show that the lithium-ion diffusion coefficient of Nb_(18)W_(16)O_(93)(10−12 cm^(2)/s)is higher than that of the conventional titanium-based anode,ensuring a relatively superior electrochemical performance.The lithium-ion diffusion mechanism was thoroughly revealed by using density functional theory simulation.There are three diffusion paths in TTB phase,among which the interlayer diffusion with the smallest diffusion barrier(0.46 eV)has more advantages than other typical anodes(such as graphite,0.56 eV).The relatively smaller lithium-ion diffusion barrier makes TTB phase Nb_(18)W_(16)O_(93)become a potential highspecific-power anode material.展开更多
We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to...We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single-UC FeS, while it has been significantly reduced in the double-UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of the FeS thin film reveal the electronic doping effect of single-UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximately 1.5?meV are observed in the films of both thicknesses at 4.6?K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.展开更多
Strontium titanate(SrTiO_(3))is a typical perovskite-type ceramic oxide and studying its high-pressure phases are critical to understand the ferroelastic phase transition.SrTiO_(3)also can be used as an important anal...Strontium titanate(SrTiO_(3))is a typical perovskite-type ceramic oxide and studying its high-pressure phases are critical to understand the ferroelastic phase transition.SrTiO_(3)also can be used as an important analog of davemaoite(CaSiO_(3))to understand the compositional and velocity structure of the Earth’s interior.However,the high-pressure studies on the cubic-to-tetragonal phase transition pressure and elastic properties remain unclear for SrTiO_(3).Here,we investigate the phase transition and elasticity of single-crystal SrTiO_(3)by Raman and Brillouin scattering combined with diamond anvil cell.The acoustic velocities of single-crystal SrTiO_(3)and the independent elastic constants of cubic and tetragonal SrTiO_(3)are determined up to 27.5 GPa at room temperature.This study indicates that C_(11),C_(12),and C_(44)exhibit abnormal changes at 10.3 GPa,which is related to the cubicto-tetragonal phase transition.Interestingly,a significant softening on shear modulus and a large anisotropy of shear wave splitting(A_(S)^(PO))jump are observed at 10.3 GPa.Using obtained elastic constants,the coefficients of the Landau potential are calculated to understand the phase transition between cubic and tetragonal.The calculated coefficients of the Landau potential are,λ_(2)=3.12×10^(-2)GPa,λ_(4)=-2.02×10^(-2)GPa,B~*=1.34×10^(-4)GPa and B=1.66×10^(-4)GPa.The elastic results have profound implications in understanding the structure of the Earth’s interior and indicate that the presence of tetragonal Ti-bearing CaSiO_(3)helps to explain the large APO S of the Earth’s mid-mantle.展开更多
Body-centered tetragonal C4 (bct C4) is a new form of crystalline spa carbon, which is found to be transparent, dynamically stable at zero pressure and more stable than graphite beyond 18.6 GPa. Symmetry analysis of...Body-centered tetragonal C4 (bct C4) is a new form of crystalline spa carbon, which is found to be transparent, dynamically stable at zero pressure and more stable than graphite beyond 18.6 GPa. Symmetry analysis of the vibrational modes of bct C4 at Brillouin zone center is performed, Raman and infrared active modes are identified. The analysis results show that, different from cubic diamond and hexagonal diamond, there is an infrared active mode in bct C4. Based on first-principle method within the local density approximation, vibrational frequencies, Born effective charge tensors, and infrared absorption intensity of bct C4 are obtained. The vibrational modes of bct C4 are presented and compared with those of cubic diamond and hexagonal diamond in detail展开更多
A 240-nm thick Al0.4In0.02Ga0.58N layer is grown by metal organic chemical vapour deposition, with an over 1-μm thick GaN layer used as a buffer layer on a substrate of sapphire (0001). Rutherford backscattering an...A 240-nm thick Al0.4In0.02Ga0.58N layer is grown by metal organic chemical vapour deposition, with an over 1-μm thick GaN layer used as a buffer layer on a substrate of sapphire (0001). Rutherford backscattering and channeling are used to characterize the microstructure of AlInGaN. The results show a good crystalline quality of AIInGaN (χmin = 1.5%) with GaN buffer layer. The channeling angular scan around an off-normal {1213} axis in the {1010} plane of the AlInGaN layer is used to determine tetragonal distortion eT, which is caused by the elastic strain in the AIInGaN. The resulting AlInGaN is subjected to an elastic strain at interracial layer, and the strain decreases gradually towards the near-surface layer. It is expected that an epitaxial AlInGaN thin film with a thickness of 850 nm will be fully relaxed (^eT = 0).展开更多
In the present work, the elastic constants and derived properties of tetragonal Heusler compounds were calculated using the high accuracy of the full-potential linearized augmented plane wave (FPLAPW) method. To find ...In the present work, the elastic constants and derived properties of tetragonal Heusler compounds were calculated using the high accuracy of the full-potential linearized augmented plane wave (FPLAPW) method. To find the criteria required for an accurate calculation, the consequences of increasing the numbers of k-points and plane waves on the convergence of the calculated elastic constants were explored. Once accurate elastic constants were calculated, elastic anisotropies, sound velocities, Debye temperatures, malleability, and other measurable physical properties were determined for the studied systems. The elastic properties suggested metallic bonding with intermediate malleability, between brittle and ductile, for the studied Heusler compounds. To address the effect of off-stoichiometry on the mechanical properties, the virtual crystal approximation (VCA) was used to calculate the elastic constants. The results indicated that an extreme correlation exists between the anisotropy ratio and the stoichiometry of the Heusler compounds, especially in the case of Ni2MnGa. Metastable cubic Ni2MnGa exhibits a very high anisotropy (≈28) and hypothetical cubic Rh2FeSn violates the Born-Huang stability criteria in the L21 structure. The bulk moduli of the investigated tetragonal compounds do not vary much (≈130 ...190 GPa). The averaged values of the other elastic moduli are also rather similar, however, rather large differences are found for the elastic anisotropies of the compounds. These are reflected in very different spatial distributions of Young’s moduli when comparing the different compounds. The slowness surfaces of the compounds also differ considerably even though the average sound velocities are in the same order of magnitude (3.2 ... 3.6 km/s). The results demonstrate the importance of the elastic properties not only for purely tetragonal Heusler compounds but also for phase change materials that exhibit magnetic shape memory or magnetocaloric effects.展开更多
Yttria-stabilized zirconia ceramics were prepared by using different raw materials in order to compare commercially available optical ferrule. Injection-molded cylindrical green compacts were sintered in air at 1350...Yttria-stabilized zirconia ceramics were prepared by using different raw materials in order to compare commercially available optical ferrule. Injection-molded cylindrical green compacts were sintered in air at 1350°C, 1400°C and 1450°C for 2 hrs, followed by furnace cooling. Crystallinity, microstructure and mechanical strength of the sintered body were evaluated by using an X-ray diffraction analyses, a field emission-scanning electron microscope, a universal tester, and a micro-hardness tester, respectively. For practical usage, the sample B sintered at 1350°C was favorable because of high tetragonality and good mechanical strength.展开更多
The presence of high-density defects is rarely observed in bulk 3 mol%yttria-stabilized tetragonal zirconia polycrystal(3Y-TZP)ceramics obtained through conventional pressureless sintering.In the present work,fine-gra...The presence of high-density defects is rarely observed in bulk 3 mol%yttria-stabilized tetragonal zirconia polycrystal(3Y-TZP)ceramics obtained through conventional pressureless sintering.In the present work,fine-grained dense 147 nm 3Y-TZP ceramics were prepared by pressureless sintering of commercial 0.25 wt%alumina-doped zirconia powders at 1300℃.A novel discovery was reported in which large amounts of defects were present in the grain interiors of the sample.The phenomenon was further examined using three types of powder samples,and the reasons for defect formation were investigated by microstructural characterization using high-resolution transmission electron microscopy(HRTEM)analysis and Rietveld refinement.The results confirmed the essential dependence of the defect formation on the alumina addition.The authors attributed the defect formation to the significant difference in ionic radii of the solvent and solute during the dissolution of alumina into the zirconia lattice.The sintering kinetics were proposed to be enhanced by the presence of substantial defects,which consequently favored the low-temperature sintering of the alumina-doped zirconia ceramics.展开更多
Nb-based tungsten bronze oxides have emerged as attractive materials in various fields,owing to the structural openings and simple synthesis method.In this work,the tetragonal tungsten bronze(TTB)NaWNbO_(6) was prepar...Nb-based tungsten bronze oxides have emerged as attractive materials in various fields,owing to the structural openings and simple synthesis method.In this work,the tetragonal tungsten bronze(TTB)NaWNbO_(6) was prepared by solid state reaction at a relatively low temperature of 775°C.The local structure was systematically studied by solid state nuclear magnetic resonance(SSNMR)with the aid of transition electronic microscopy(TEM).The analysis indicates that NaWNbO6 has pentagonal,square,and triangular tunnels.Notably,square tunnels were partly occupied(50%)by Na,which creates the ability for the Li-ion storage with a volumetric capacity of 210 A·h·L^(−1)at 0.2 C.The 2D ^(23)Na-^(23)Na EXSY results further suggest the ability of ions to fast exchange between the tetragonal and pentagonal tunnels,resulting in a high-rate performance 20 C.展开更多
Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs laye...Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe_(2)As_(2)upon potassium intercalation using molecular beam epitaxy.The in-situ low-temperature√2×√2scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic reconstruction of the FeAs layer and stripe pattern of KxFe_(2)As_(2),accompanied by the development of a superconducting-like gap.The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K.This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.22278123).
文摘Platinum-based alloy nanoparticles are the most attractive catalysts for the oxygen reduction reaction at present,but an in-depth understanding of the relationship between their short-range structural information and catalytic performance is still lacking.Herein,we present a synthetic strategy that uses transition-metal oxide-assisted thermal diffusion.PtCo/C catalysts with localized tetragonal distortion were obtained by controlling the thermal diffusion process of transition-metal elements.This localized structural distortion induced a significant strain effect on the nanoparticle surface,which further shortened the length of the Pt-Pt bond,improved the electronic state of the Pt surface,and enhanced the performance of the catalyst.PtCo/C catalysts with special short-range structures achieved excellent mass activity(2.27 Amg_(Pt)^(-1))and specific activity(3.34 A cm^(-2)).In addition,the localized tetragonal distortion-induced surface compression of the Pt skin improved the stability of the catalyst.The mass activity decreased by only 13%after 30,000 cycles.Enhanced catalyst activity and excellent durability have also been demonstrated in the proton exchange membrane fuel cell configuration.This study provides valuable insights into the development of advanced Pt-based nanocatalysts and paves the way for reducing noble-metal loading and increasing the catalytic activity and catalyst stability.
基金Project supported by the National Natural Science Foundation of China(Grant No.21271183)the National Basic Research Program of China(Grant Nos.2011CBA00112 and 2011CB808202)
文摘A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of fiat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature.
基金supported by the State Key Development Program for Basic Research of China (Grant No 2004CB619302)the National Natural Science Foundation of China (Grant No 50271038)
文摘This paper gives the general expressions for the compliance s′ijkl, Young's modulus E(hkl) and Poisson's ratio v(hkl, θ) along arbitrary loading direction [hkl] for tetragonal crystals. The representation surface for which the length of the radius vector in the [hkl] direction equals E(hkl) and representation curve for which the length of the radius vector with angle θ deviated from the reference directions [001^-], [100], [001^-], [101^-] and [112^-] equals v(100, θ), v(001, θ), v(110,θ), v(101,θ) and v(111, θ) respectively, are constructed for nine tetragonal crystals (ammonium dihydrogen arsenate, ammonium dihydrogen phosphate, barium titanate, indium, nickel sulfate, potassium dihydrogen arsenate, potassium dihydrogen phosphate, tin and zircon). The characteristics of them are analysed in detail.
基金Funded by the National Natural Science Foundation of China(11564009)the Natural Science Foundation of Guangxi Province(2013GXNSFBA019230 and 2014GXNSFAA118350)the Open Founding of Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Nonferrous Metal and Featured Materials(13KF-17 and 15KF-12)
文摘In order to found new dielectrics ceramics in tungsten bronze structure, unfilled tungsten bronze(TB) ceramics with nominal formula Ba4PrFe(0.5)Nb(9.5)O(30) were prepared by the solid state reaction method. The microstructure and dielectric properties were studied using powder X-ray diffraction, field emission scanning electron microscope, and variable temperature dielectric test system. The results show that the ceramics have a single phase and belong to the space group of P4bm with the cell of a = b = 12.4839(3) ?, c = 3.9409(5) ?, V = 614.192(2) ?3. The frequency dependent dielectrics properties show that the ceramics have a Debye-like relaxation at room temperature, while the temperature dependent dielectrics properties indicate that the ceramics are a relaxor and the relaxation is due to the nanopolars and oxygen vacancies. The ceramics have a potential application in electronic ceramics as temperature-stable multilayer ceramic capacitors.
基金Supported by the Fundamental Research Funds for the Central Universitiesthe Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China under Grant No 11204123
文摘The carrier mobility of two-dimensional tetragonal carbon allotrope (T-CA) from porous graphene is investigated by first-principles calculations. T-CA can be constructed from divacancy and Stone-Thrower--Wales defects from graphene. T-CA is a direct semiconductor with a band gap of 0.4 eV at F point. T-CA possesses a high carrier mobility of the order of 104 cm2V-ls-1. As our study demonstrates, T-CA has potential applications for next-generation electronic materials.
文摘Grinding-induced tm phase transformation and the resultant texture in ceria-yttria-doped tetragonal zirconia polycrystals with varied tetragonality have been studied by XRD. It is observed that the reversible tm phase transformation occurs during grinding and the intensity ratio of I(002)t/I(200)t increases with the transformability. The author proposes that the texture induced by grinding at low temperatures is due to the tetragonal variant reorientation via cyclic,reversible tm phase transformation, termed 'transformational domain switching', instead of the ferroelastic one
基金Supported by the National Natural Science Foundation of China under Grant Nos 61475132 and 61501392
文摘The recently discovered tetragonal, monoclinie and orthorhombic polymorphs of M3N4 (M=C, Si, Sn) are in- vestigated by using first-principles calculations. A set of anisotropic elastic quantities, i.e., the bulk and shear moduli, Young's modulus, Poisson ratio, H/G ratio and rickets hardness of M3N4 (M=C, Si, Sn) are predicted. The quasi-harmonic Debye model, assuming that the solids are isotopic, may lead to large errors for the non-cubic crystals. The thermal effects are obtained by the traditional quasi-harmonic approach. The dependences of heat capacity, thermal expansion coefficient and Debye temperature on temperature and pressure are systematically discussed in the pressure range of 0 IOGPa and in the temperature range of 0-1100 K. More importantly, o- C3N4 is a negative thermal expansion material. Our results may have important consequences in shaping the understanding of the fundamental properties of these binary nitrides.
基金Project supported by the National Youth Natural Science Foundation,China(Grant No.61106099)
文摘In this report, the analytical expression of Coulombic interaction between a spherical nanoparticle and a tetragonal nanorod is derived. To evaluate the Coulombic interaction in the oriented attachment growth of tetragonal nanorods, we analyze the correlation between the Coulombic interaction and the important growth parameters, including: nanoparticle- nanorod separation, aspect ratio of the nanorods, and surface charge density. Our work opens up the opportunity to investi-gate interparticle interactions in the oriented attachment growth of tetragonal nanorods.
基金Supported by the National Natural Science Foundation of China under Grant No.50902110the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,China+2 种基金the Doctorate Foundation of Northwestern Polytechnical University under Grant No.cx201005the 111 Project under Grant No.B08040the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China under Grant No.58-TZ-2011
文摘Structural, elastic and electronic properties of tetragonal Hf02 at applied hydrostatic pressure up to 50 GPa have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density- functional theory (DFT). The calculated ground-state properties are in good agreement with previous theoretical and experimental data. Six independent elastic constants of tetragonal Hf02 have been calculated at zero pressure and high pressure. From the obtained elastic constants, the bulk, shear and Young's modulus, Poisson's coefficients, acoustic velocity and Debye temperature have been calculated at the applied pressure. Band structure shows that tetragonal Hf02 is an indirect band gap. The variation of the gap versus pressure is well fitted to a quadratic function.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074304 and 11222433)the National Basic Research Program of China (Grant Nos. 2010CB923004 and 2011CBA00112)supported by AFOSR-Multidisciplinary University, ResearchInitiative (Grant No. FA9550-09-1-0603)
文摘We report 7SAs NMR studies on single crystals of rare-earth doped iron pnictide superconductor Ca1-xPrxFe2As2. In both cases of x = 0.075, 0.15, a large increase of Vq upon cooling is consistent with the tetragonal-collapsed tetragonal structure transition. A sharp drop of the Knight shift is also seen just below the structure transition, which suggests the quenching of Fe local magnetism, and therefore offers important understanding of the collapsed tetragonal phase. At even low temperatures, the 1/75 T1 is enhanced and forms a peak at T ≈ 25 K, which may be caused by the magnetic ordering of the Pr3+ moments or soin dynamics of mobile domain walls.
基金the Key R&D Program of Shaanxi Province,China(No.2019ZDLGY04-05)the Natural Science Foundation of Shaanxi Province,China(No.2019JLZ-01)+1 种基金the Fundamental Research Funds for the Central Universities of China(Nos.19GH020302,3102019JC005,3102021ZD0401,3102021TS0406)the Science,Technology,and Innovation Commission of Shenzhen Municipality,China(No.JCYJ20180508151856806).
文摘By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM and XPS confirm that the expected sample was produced.GITT results show that the lithium-ion diffusion coefficient of Nb_(18)W_(16)O_(93)(10−12 cm^(2)/s)is higher than that of the conventional titanium-based anode,ensuring a relatively superior electrochemical performance.The lithium-ion diffusion mechanism was thoroughly revealed by using density functional theory simulation.There are three diffusion paths in TTB phase,among which the interlayer diffusion with the smallest diffusion barrier(0.46 eV)has more advantages than other typical anodes(such as graphite,0.56 eV).The relatively smaller lithium-ion diffusion barrier makes TTB phase Nb_(18)W_(16)O_(93)become a potential highspecific-power anode material.
基金Supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of Chinathe Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20130002120033
文摘We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single-UC FeS, while it has been significantly reduced in the double-UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of the FeS thin film reveal the electronic doping effect of single-UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximately 1.5?meV are observed in the films of both thicknesses at 4.6?K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.
基金support from China Postdoctoral Science Foundation(Grant No.2020M670841)support from the National Key Research and Development Program of China(Grant No.2017YFA0403704)+3 种基金supports from the National Natural Science Foundation of China(Grant Nos.12074141,42102030,and 11974129)support from Jilin Provincial Science and Technology Development Project(Grant Nos.20210402054GH and 20210509038RQ)support from the Program for Science and Technology of Education Department of Jilin Province(Grant No.JJKH20211036KJ)the Fundamental Research Funds for the Central Universities。
文摘Strontium titanate(SrTiO_(3))is a typical perovskite-type ceramic oxide and studying its high-pressure phases are critical to understand the ferroelastic phase transition.SrTiO_(3)also can be used as an important analog of davemaoite(CaSiO_(3))to understand the compositional and velocity structure of the Earth’s interior.However,the high-pressure studies on the cubic-to-tetragonal phase transition pressure and elastic properties remain unclear for SrTiO_(3).Here,we investigate the phase transition and elasticity of single-crystal SrTiO_(3)by Raman and Brillouin scattering combined with diamond anvil cell.The acoustic velocities of single-crystal SrTiO_(3)and the independent elastic constants of cubic and tetragonal SrTiO_(3)are determined up to 27.5 GPa at room temperature.This study indicates that C_(11),C_(12),and C_(44)exhibit abnormal changes at 10.3 GPa,which is related to the cubicto-tetragonal phase transition.Interestingly,a significant softening on shear modulus and a large anisotropy of shear wave splitting(A_(S)^(PO))jump are observed at 10.3 GPa.Using obtained elastic constants,the coefficients of the Landau potential are calculated to understand the phase transition between cubic and tetragonal.The calculated coefficients of the Landau potential are,λ_(2)=3.12×10^(-2)GPa,λ_(4)=-2.02×10^(-2)GPa,B~*=1.34×10^(-4)GPa and B=1.66×10^(-4)GPa.The elastic results have profound implications in understanding the structure of the Earth’s interior and indicate that the presence of tetragonal Ti-bearing CaSiO_(3)helps to explain the large APO S of the Earth’s mid-mantle.
文摘Body-centered tetragonal C4 (bct C4) is a new form of crystalline spa carbon, which is found to be transparent, dynamically stable at zero pressure and more stable than graphite beyond 18.6 GPa. Symmetry analysis of the vibrational modes of bct C4 at Brillouin zone center is performed, Raman and infrared active modes are identified. The analysis results show that, different from cubic diamond and hexagonal diamond, there is an infrared active mode in bct C4. Based on first-principle method within the local density approximation, vibrational frequencies, Born effective charge tensors, and infrared absorption intensity of bct C4 are obtained. The vibrational modes of bct C4 are presented and compared with those of cubic diamond and hexagonal diamond in detail
基金Project supported by the National Natural Science Foundation of China(Grant No.10875004)the National Basic Research Program of China(Grant No.2010CB832904)
文摘A 240-nm thick Al0.4In0.02Ga0.58N layer is grown by metal organic chemical vapour deposition, with an over 1-μm thick GaN layer used as a buffer layer on a substrate of sapphire (0001). Rutherford backscattering and channeling are used to characterize the microstructure of AlInGaN. The results show a good crystalline quality of AIInGaN (χmin = 1.5%) with GaN buffer layer. The channeling angular scan around an off-normal {1213} axis in the {1010} plane of the AlInGaN layer is used to determine tetragonal distortion eT, which is caused by the elastic strain in the AIInGaN. The resulting AlInGaN is subjected to an elastic strain at interracial layer, and the strain decreases gradually towards the near-surface layer. It is expected that an epitaxial AlInGaN thin film with a thickness of 850 nm will be fully relaxed (^eT = 0).
文摘In the present work, the elastic constants and derived properties of tetragonal Heusler compounds were calculated using the high accuracy of the full-potential linearized augmented plane wave (FPLAPW) method. To find the criteria required for an accurate calculation, the consequences of increasing the numbers of k-points and plane waves on the convergence of the calculated elastic constants were explored. Once accurate elastic constants were calculated, elastic anisotropies, sound velocities, Debye temperatures, malleability, and other measurable physical properties were determined for the studied systems. The elastic properties suggested metallic bonding with intermediate malleability, between brittle and ductile, for the studied Heusler compounds. To address the effect of off-stoichiometry on the mechanical properties, the virtual crystal approximation (VCA) was used to calculate the elastic constants. The results indicated that an extreme correlation exists between the anisotropy ratio and the stoichiometry of the Heusler compounds, especially in the case of Ni2MnGa. Metastable cubic Ni2MnGa exhibits a very high anisotropy (≈28) and hypothetical cubic Rh2FeSn violates the Born-Huang stability criteria in the L21 structure. The bulk moduli of the investigated tetragonal compounds do not vary much (≈130 ...190 GPa). The averaged values of the other elastic moduli are also rather similar, however, rather large differences are found for the elastic anisotropies of the compounds. These are reflected in very different spatial distributions of Young’s moduli when comparing the different compounds. The slowness surfaces of the compounds also differ considerably even though the average sound velocities are in the same order of magnitude (3.2 ... 3.6 km/s). The results demonstrate the importance of the elastic properties not only for purely tetragonal Heusler compounds but also for phase change materials that exhibit magnetic shape memory or magnetocaloric effects.
文摘Yttria-stabilized zirconia ceramics were prepared by using different raw materials in order to compare commercially available optical ferrule. Injection-molded cylindrical green compacts were sintered in air at 1350°C, 1400°C and 1450°C for 2 hrs, followed by furnace cooling. Crystallinity, microstructure and mechanical strength of the sintered body were evaluated by using an X-ray diffraction analyses, a field emission-scanning electron microscope, a universal tester, and a micro-hardness tester, respectively. For practical usage, the sample B sintered at 1350°C was favorable because of high tetragonality and good mechanical strength.
基金the National Key R&D Program of China(No.2021YFB3701400)the National Natural Science Foundation of China(Nos.92163208 and 52322207)the Foundation of Hubei Province Key Laboratory of Green Materials for Light Industry,Hubei University of Technology.
文摘The presence of high-density defects is rarely observed in bulk 3 mol%yttria-stabilized tetragonal zirconia polycrystal(3Y-TZP)ceramics obtained through conventional pressureless sintering.In the present work,fine-grained dense 147 nm 3Y-TZP ceramics were prepared by pressureless sintering of commercial 0.25 wt%alumina-doped zirconia powders at 1300℃.A novel discovery was reported in which large amounts of defects were present in the grain interiors of the sample.The phenomenon was further examined using three types of powder samples,and the reasons for defect formation were investigated by microstructural characterization using high-resolution transmission electron microscopy(HRTEM)analysis and Rietveld refinement.The results confirmed the essential dependence of the defect formation on the alumina addition.The authors attributed the defect formation to the significant difference in ionic radii of the solvent and solute during the dissolution of alumina into the zirconia lattice.The sintering kinetics were proposed to be enhanced by the presence of substantial defects,which consequently favored the low-temperature sintering of the alumina-doped zirconia ceramics.
基金supported by the National Natural Science Foundation of China(Nos.22090043,21622101)the Guangxi Natural Science Foundation,China(No.2019GXNSFGA245006).
文摘Nb-based tungsten bronze oxides have emerged as attractive materials in various fields,owing to the structural openings and simple synthesis method.In this work,the tetragonal tungsten bronze(TTB)NaWNbO_(6) was prepared by solid state reaction at a relatively low temperature of 775°C.The local structure was systematically studied by solid state nuclear magnetic resonance(SSNMR)with the aid of transition electronic microscopy(TEM).The analysis indicates that NaWNbO6 has pentagonal,square,and triangular tunnels.Notably,square tunnels were partly occupied(50%)by Na,which creates the ability for the Li-ion storage with a volumetric capacity of 210 A·h·L^(−1)at 0.2 C.The 2D ^(23)Na-^(23)Na EXSY results further suggest the ability of ions to fast exchange between the tetragonal and pentagonal tunnels,resulting in a high-rate performance 20 C.
基金supported by the National Natural Science Foundation of China(Nos.12074210,51788104,11790311,and 12141403)the Basic and Applied Basic Research Major Programme of Guangdong Province of China(No.2021B0301030003)Jihua Laboratory(Project No.X210141TL210).
文摘Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe_(2)As_(2)upon potassium intercalation using molecular beam epitaxy.The in-situ low-temperature√2×√2scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic reconstruction of the FeAs layer and stripe pattern of KxFe_(2)As_(2),accompanied by the development of a superconducting-like gap.The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K.This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.