The microstructure and properties of tetrahedral amorphous carbon (ta-C) films deposited by the filtered cathodic vacuum arc technology has been investigated by visible Raman spectroscopy, AFM and Nano-indentor. The R...The microstructure and properties of tetrahedral amorphous carbon (ta-C) films deposited by the filtered cathodic vacuum arc technology has been investigated by visible Raman spectroscopy, AFM and Nano-indentor. The Raman spectra have been fitted with a single skewed Lorentzian lineshape described by BWF function defining coupling coefficient, which characterizes the degree of asymmetry and is correlated with the sp3 content. When the substrate bias is -80 V, the sp3 content is the most and simultaneously the coupling coefficient is the least, following with the minimum root mean square surface roughness (Rq=0.23 nm) and the highest hardness (51.49 GPa), Young′s modulus (512.39 GPa), and critical scratching load (11.72 mN). As the substrate bias is increased or decreased, the sp3 content and other properties lower correspondingly.展开更多
In this study, tetrahedral amorphous carbon (ta-C) films with thicknesses between several 100 nm and several micrometers have been deposited onto polished tungsten carbide and steel substrates by pulsed laser depositi...In this study, tetrahedral amorphous carbon (ta-C) films with thicknesses between several 100 nm and several micrometers have been deposited onto polished tungsten carbide and steel substrates by pulsed laser deposition (PLD) using an excimer laser (248 nm wavelength). We investigate the optical properties (e.g. the refractive index (n) and extinction coefficient (k) in the visible and near-infrared wavelength range) of these layers in dependence of the used laser ablation fluence on the target. It is shown that n of ~2000 nm thick ta-C films can be tuned, depending on the sp3-content, between n = 2.5 and 2.8 at a wavelength of 632 nm. Besides of this k reduces with the sp3-content and is as low as 0.03 at sp3-contents of more than 75%. We proof that this gives the opportunity to prepare coating with tailored optical properties. Furthermore, it is shown that the ta-C films have low background fluorescence in the wavelengths range of 380 - 750 nm, which make this thin films attractive for certain optical, medical and biotechnological applications. We present for the first time that one possible application is the use in Lab-on-a-Chip-systems (LOC). Within these systems, the ultrasensitive detection of fluorescence markers and dyes is a challenge. In order to increase the signal-to-noise-ratio, a setup was developed, that used the specific optical properties of ta-C films produced by PLD. We used the ta-C film as an integrated reflector that combined low background fluorescence, a low reflectivity at the excitation wavelength and the high reflectivity at the emission wavelength. We prove that this setup improves the detection of fluorescence photons.展开更多
Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method...Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.展开更多
The non-resonant vibrational Raman spectra of nitrogen-doped tetrahedral amorphous carbon have been calculated from first principles, including the generation of a structural model, and the calculation of vibrational ...The non-resonant vibrational Raman spectra of nitrogen-doped tetrahedral amorphous carbon have been calculated from first principles, including the generation of a structural model, and the calculation of vibrational frequencies, vibrational eigenmodes and Raman coupling tensors. The calculated Raman spectra are in good agreement with the experimental results. The broad band at around 500 cm-1 arises from mixed bonds. The T peak originates from the vibrations of sp3 carbon and the G peak comes from the stretching vibrations of sp2-type bonding of C=C and C=N. The simulation results indicate the direct contribution of N vibrations to Raman spectra.展开更多
Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regar...Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regarding the mechanical and tribological properties of a 2‐μm‐thick multilayer ta‐C coating on high‐speed steel substrates.Multilayers composed of alternating soft and hard layers are fabricated using filtered a cathodic vacuum arc with alternating substrate bias voltages(0 and 100 V or 0 and 150 V).The thickness ratio is discovered to be 1:3 for the sp2‐rich and sp3‐rich layers.The results show that the hardness and elastic modulus of the multilayer ta‐C coatings increase with the sp3 content of the hard layer.The hardness reached approximately 37 GPa,whereas an improved toughness and a higher adhesion strength(>29 N)are obtained.The friction performance(μ=0.07)of the multilayer coating is similar to that of the single layer ta‐C thick coating,but the wear rate(0.13×10^(–6) mm^(3)/(N∙m))improved under a high load of 30 N.We further demonstrate the importance of the multilayer structure in suppressing crack propagation and increasing the resistance to plastic deformation(H3/E2)ratio.展开更多
文摘The microstructure and properties of tetrahedral amorphous carbon (ta-C) films deposited by the filtered cathodic vacuum arc technology has been investigated by visible Raman spectroscopy, AFM and Nano-indentor. The Raman spectra have been fitted with a single skewed Lorentzian lineshape described by BWF function defining coupling coefficient, which characterizes the degree of asymmetry and is correlated with the sp3 content. When the substrate bias is -80 V, the sp3 content is the most and simultaneously the coupling coefficient is the least, following with the minimum root mean square surface roughness (Rq=0.23 nm) and the highest hardness (51.49 GPa), Young′s modulus (512.39 GPa), and critical scratching load (11.72 mN). As the substrate bias is increased or decreased, the sp3 content and other properties lower correspondingly.
文摘In this study, tetrahedral amorphous carbon (ta-C) films with thicknesses between several 100 nm and several micrometers have been deposited onto polished tungsten carbide and steel substrates by pulsed laser deposition (PLD) using an excimer laser (248 nm wavelength). We investigate the optical properties (e.g. the refractive index (n) and extinction coefficient (k) in the visible and near-infrared wavelength range) of these layers in dependence of the used laser ablation fluence on the target. It is shown that n of ~2000 nm thick ta-C films can be tuned, depending on the sp3-content, between n = 2.5 and 2.8 at a wavelength of 632 nm. Besides of this k reduces with the sp3-content and is as low as 0.03 at sp3-contents of more than 75%. We proof that this gives the opportunity to prepare coating with tailored optical properties. Furthermore, it is shown that the ta-C films have low background fluorescence in the wavelengths range of 380 - 750 nm, which make this thin films attractive for certain optical, medical and biotechnological applications. We present for the first time that one possible application is the use in Lab-on-a-Chip-systems (LOC). Within these systems, the ultrasensitive detection of fluorescence markers and dyes is a challenge. In order to increase the signal-to-noise-ratio, a setup was developed, that used the specific optical properties of ta-C films produced by PLD. We used the ta-C film as an integrated reflector that combined low background fluorescence, a low reflectivity at the excitation wavelength and the high reflectivity at the emission wavelength. We prove that this setup improves the detection of fluorescence photons.
文摘Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.
基金Supported by the Science Creative Foundation for Distinguished Young Scholars in Harbin (Grant No. 2007RFQXG039)China Postdoctoral Science Foundation (Grant No. 20070420157)Heilongjiang Postdoctoral Financial Assistance (Grant No. LBH-Z07099)
文摘The non-resonant vibrational Raman spectra of nitrogen-doped tetrahedral amorphous carbon have been calculated from first principles, including the generation of a structural model, and the calculation of vibrational frequencies, vibrational eigenmodes and Raman coupling tensors. The calculated Raman spectra are in good agreement with the experimental results. The broad band at around 500 cm-1 arises from mixed bonds. The T peak originates from the vibrations of sp3 carbon and the G peak comes from the stretching vibrations of sp2-type bonding of C=C and C=N. The simulation results indicate the direct contribution of N vibrations to Raman spectra.
基金This work was supported by the Fundamental Research Program of the Korea Institute of Materials Science(KIMS/PNK7000)the Fundamental R&D Program of the Ministry of Science,Information&Communication Technology(ICT)Future Planning in Republic of Korea.
文摘Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regarding the mechanical and tribological properties of a 2‐μm‐thick multilayer ta‐C coating on high‐speed steel substrates.Multilayers composed of alternating soft and hard layers are fabricated using filtered a cathodic vacuum arc with alternating substrate bias voltages(0 and 100 V or 0 and 150 V).The thickness ratio is discovered to be 1:3 for the sp2‐rich and sp3‐rich layers.The results show that the hardness and elastic modulus of the multilayer ta‐C coatings increase with the sp3 content of the hard layer.The hardness reached approximately 37 GPa,whereas an improved toughness and a higher adhesion strength(>29 N)are obtained.The friction performance(μ=0.07)of the multilayer coating is similar to that of the single layer ta‐C thick coating,but the wear rate(0.13×10^(–6) mm^(3)/(N∙m))improved under a high load of 30 N.We further demonstrate the importance of the multilayer structure in suppressing crack propagation and increasing the resistance to plastic deformation(H3/E2)ratio.