The maize quadraplex tetraploids and duplex tetraploids were developed using Kato’s protocols. The phenotype ofheterosis and inbreeding depression over generations in their parents and progenies of F1, F2 and F3 were...The maize quadraplex tetraploids and duplex tetraploids were developed using Kato’s protocols. The phenotype ofheterosis and inbreeding depression over generations in their parents and progenies of F1, F2 and F3 were investigated.The results indicated that different duplex tetraploids have different genetic backgrounds, but they acquire maximumheterosis at same traits, such as the leaf length, leaf width, culm circumference and days to flowering. P.N. rises muchfaster from the F2 to F3 segment than the A.W. does for the plant height in duplex tetraploids. In comparing duplex andquadraplex over a generation the quadriplex is showing the greatest heterosis in plant height, leaf height, leaf width anddays to flowering. Most of the examples achieve the maximum heterosis at Qu F2, with the exception of culm circumference,which achieves greatest heterosis at PNAW F1. Meanwhile, this experiment shows that quadraplex tetraploids has distinctadditional favorable alleles that are not contained in duplex tetraploid, this is demonstrated by the heterosis found incrosses between the two duplex tetraploid. This finding helps explain quadraploids superiority and unique breedingbehavior, in which, the progressive heterosis and inbreeding depression in maize are due mainly to linkage disequilibrium.The severe inbreeding depression in duplex tetraploids is due mainly to the rapid loss of complementary chromosomes orgenes interactions in the first few generation of inbreeding. Correspondingly, the progressive heterosis in quadraplextetraploids is due mainly to a progressive increase in complementarities of homologous chromosomes or genes interactions.Greater complementarities of homologous chromosomes or genes interactions in tetraploids maize alse helps explainrecent molecular biology research indicating that some of traits in quadraplex tetraploids are more responsive to geneticdiversity than in duplex tetraploids. In addition, the dosage effect of polyploid in relation to the genetic basis of heterosisand inbreeding depression were discussed also.展开更多
Betula platyphylla Sukaczev tetraploids have significantly larger leaf, fruit and stoma (gigantic phenotype) than diploids of the same species;however, the mechanism underlying this difference remains unclear. Tetrapl...Betula platyphylla Sukaczev tetraploids have significantly larger leaf, fruit and stoma (gigantic phenotype) than diploids of the same species;however, the mechanism underlying this difference remains unclear. Tetraploid B. platyphylla transcriptome data have indicated that the expression of genes related to indole-3-acetic acid (IAA) biosynthesis and signal transduction was altered after genome duplication. IAA exerts pleiotropic effects on growth and development by inducing the expression of Aux/IAA. We identified 20 Aux/IAA genes (BpIAA1– BpIAA20) in B. platyphylla distributed across 10 chromosomes. Multiple alignment and motif analyses revealed that nine BpIAA proteins shared all four conserved domains. Phylogenetic analysis indicated that Aux/IAA families were divided into four subfamilies and that there were two pairs of BpIAA sister genes. The BpIAAs were differentially expressed in diploids and tetraploids. Moreover, the expression levels of the nine BpIAA genes were specifically up-regulated in tetraploids from June to September compared with May (except August 5th) in tetraploids, while they were down-regulated in diploids. IAA levels were more than twofold higher in tetraploids than diploids during the vegetative season. These results indicate that genome duplication of B. platyphylla caused the up-regulated of genes involved in IAA synthesis, and the increased concentration of IAA may induce the constitutive expression of 20 BpIAA genes. Therefore, the significant changes in the expression patterns of the BpIAAs contributed to the gigantic phenotype of tetraploids to some extent. Our research sheds light on the phenotypic variations observed in B. platyphylla tetraploids.展开更多
[Objectives]This study was conducted to actively carry out the breeding of new tetraploid common buckwheat varieties and its supporting breeding techniques.[Methods]Pintianqiao 3 is a new tetraploid common buckwheat v...[Objectives]This study was conducted to actively carry out the breeding of new tetraploid common buckwheat varieties and its supporting breeding techniques.[Methods]Pintianqiao 3 is a new tetraploid common buckwheat variety developed by College of Agriculture of Shanxi Agricultural University and Agricultural Genetic Resources Center of Shanxi Agricultural University,using‘Pintianqiao 1’as the parent,through mutation treatment with 0.2%colchicine aqueous solution,grain selection,plant selection,isolation and identification,variety comparison,regional test and field investigation.The variety has chromosomes 2n=4X=32,and shows a spring sowing period of 101 d and a summer sowing period of 80 d,large flowers and seeds(with a 1000-grain weight of 41.4 g),and good resistance to lodging.[Results]From 2021 to 2022,Pintianqiao 3 participated in the independent joint regional test of common buckwheat varieties in Shanxi Province,and the average yield in 10 test positions was 1.8 kg,equivalent to 1800 kg/hm^(2),which was 8.4%higher than the control.It passed the field investigation conducted by Shanxi provincial expert group for identification of non-major crop varieties in Dongyang and Kelan experimental sites on September 2-3,2022.On January 4,2024,it passed the preliminary examination of Shanxi Provincial Crop Variety Approval Committee.The seed reproduction technique of Pintianqiao 3 including land selection,preparation before sowing,sowing,field management and timely harvesting has been developed.[Conclusions]This study provides technical support for the demonstration and popularization of this new variety.展开更多
1 Introduction Gynogenesis is a rare reproductive mode in fish. Among a few of species reproduced by this method, silver crucian carp (Carassius auratus gibelio) is the most special one. The specialities mainly includ...1 Introduction Gynogenesis is a rare reproductive mode in fish. Among a few of species reproduced by this method, silver crucian carp (Carassius auratus gibelio) is the most special one. The specialities mainly include the following two aspects: (ⅰ)The crucian carp exists as a bisexual population which can be reproduced by natural gynogenesis, because there are both gynogenetic function and certain proportion of males in the offsprings; (ⅱ)展开更多
Lectins are natural proteins in animals,plants,and microorganisms and can be divided into 12 families.These lectins play important roles in various environmental stresses.Some polyploid plants show tolerance to enviro...Lectins are natural proteins in animals,plants,and microorganisms and can be divided into 12 families.These lectins play important roles in various environmental stresses.Some polyploid plants show tolerance to environmental stresses and to insect pests.However,the mechanism of stress tolerance is unclear.Tetraploid Robinia pseudoacacia(4×)under salt stress showed higher tolerance than diploid R.pseudoacacia(2×).As lectin can improve stress tolerance,it was questioned whether the stress resistance of polyploid plants was related to the lectin protein.In this study,salt resistance of lectin gene TRpL1 was verified by its over-expression in plants.In addition,salt resistance of lectin protein by E.coli strains was detected.The data revealed that the over-expression transgenic plants of TRpL1 showed better salt tolerance than control plants under salt stress,and the TRpL1-expressing strain also grew better in the medium with added NaCl.Therefore,tetraploid plants can resist salt stress through TRpL1 protein regulation.展开更多
Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora...Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237(MLN)and/or p21 depletion by small interfering RNA(si RNA).Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator(FUCCI)system combined with histone H3 phosphorylation at Ser10(p S10 H3)detection.Senescence was assessed using senescence-associated-β-galactosidase(SA-β-Gal),Ki67,andγH2AX staining.Protein expression levels were determined using western blotting.Results Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment.The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells,ultimately leading to senescence in G1.During this process,the p53/p21 pathway is hyperactivated.Accompanying p21 accumulation,Aurora A kinase levels declined sharply.MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.Conclusion Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation,leading to senescence via mitotic skipping.展开更多
Tartary buckwheat(Fagopyrum tataricum)is a dual-purpose medicinal and food crop grown for its high contents of functional compounds and abundant nutrients.Although studies have shown the differences of total flavonoid...Tartary buckwheat(Fagopyrum tataricum)is a dual-purpose medicinal and food crop grown for its high contents of functional compounds and abundant nutrients.Although studies have shown the differences of total flavonoid content in Tartary buckwheat at different ploidy levels,the composition of flavonoid and its regulatory mechanisms are largely unknown.In this study,the leaf metabolome and transcriptome of diploid and tetraploid accessions of Tartary buckwheat were analyzed to gain insight into the impact of polyploidization on comparative secondary metabolite composition and molecular regulatory mechanism.Based on a widely targeted metabolomics analysis,a total of 792 metabolites were identified,including 127 flavonoids.The accumulation of 127 metabolites and expression of 3871 genes differed significantly between diploid and tetraploid Tartary buckwheat.Integrated metabolomics and transcriptome analysis revealed that chromosome doubling up-regulated the expression of upstream genes in the flavonoid biosynthesis pathway to promote the accumulation of flavonoids.The present results contribute to elucidation of the molecular mechanism of phenotypic variation associated with polyploidy in Tartary buckwheat.The findings provide a reference for further studies on phenotypic traits in polyploid Tartary buckwheat,the cloning of crucial regulatory genes,and utilization of genetic engineering technologies in the breeding of Tartary buckwheat.展开更多
Background The cyclic nucleotide-gated channel(CNGC)gene family plays a significant role in the uptake of both essential and toxic cations,and has a role in enhancing tolerance to various forms of abiotic stresses as ...Background The cyclic nucleotide-gated channel(CNGC)gene family plays a significant role in the uptake of both essential and toxic cations,and has a role in enhancing tolerance to various forms of abiotic stresses as well as the modulation of the heavy metal toxicity to plant through the absorption of heavy metals.Results A complete genome-wide identification and functional characterization of the cotton CNGC genes was carried out,in which 55,28,and 29 CNGC genes were identified in Gossypium hirsutum,G.raimondii,and G.arboreum,respectively.The protein encoded by the CNGC genes exhibited GRAVY value below zero,indicating their hydrophilic property.CNGC genes were unevenly distributed in 19 out of 26 chromosomes,in which the highest density were observed on Ah05,with 8 genes.High gene coverage was observed among the diploid cotton species,with CNGC genes mapped on all A chromosomes and on 11 out of 13 of D chromosomes.The majority of CNGC proteins were localized in the endoplasmic reticulum,nucleus,and plasma membrane.Gene expression analysis revealed the up-regulation of Gh_A01G0520(CNGC4)and Gh_D13G1974(CNGC5)across various forms of abiotic stresses.Moreover,down-regulation of Gh_A01G0520(CNGC4)and Gh_D13G1974(CNGC5)in CNGCs silenced plants caused the significantly reduced ability to tolerate drought and salt stresses.All CNGCs silenced plants were recorded to have significantly low content of antioxidants but relatively higher content of oxidant,including MDA and H_(2)O_(2).Furthermore,SPAD,CMS(cell membrane stability),ELWL(excised leaf water loss),SDW(shoot dry matter weight),and RDW(root dry matter weight)were all lower in CNGCs silenced plants compared with the wild type plants.Conclusion Significant reduction in antioxidant content and negative effects of physiological and morphological characters in CNGCs silenced plants has revealed the novel role of CNGC genes in enhancing cell integrity under abiotic stress conditions.These results provide vital information that will expand our understanding of the CNGC gene family in cotton and other plants,thus promoting the integration of these genes in the development of the environmental resilient plants.展开更多
[Objective] This study was conducted to detect the variation induction ability of ethyl methanesulfonate (EMS), to construct a mutant population. [Method] 0.6%, 1.2% and 2.4% EMS solutions were used for inducing 2 4...[Objective] This study was conducted to detect the variation induction ability of ethyl methanesulfonate (EMS), to construct a mutant population. [Method] 0.6%, 1.2% and 2.4% EMS solutions were used for inducing 2 400 stem segments of test-tube plantlets of tetraploid potato Longshu 7, and an asexual mutant population including leaf, plant type, stem, stolon, glandular hair traits was constructed. [Result] Twenty two mutation types, i.e. etiolated plantlet, albino plantlet, leaf-color gradient, etiolated vein, wrapped bud, lobed leaf, crinkled leaf, deformed compound leaf, cluster, branch, top enlargement, top bifurcation, succulent, stolon distortion, stolon shift, early tuberization, hair stolon, stem enlargement, vine stem, foliage stem, glandular hair and whorled leaf types were observed in total. There were 52 mutant single plants in total, with a mutation rate of 21.67‰. [Conclusion] The glandular hair, clustered short-stem, branched stem and early tuberization types of mutants have higher application value, and are anticipated to be used in potato functional genome research, gene improvement and germplasm innovation.展开更多
This study was conducted to investigate ovule abortion of tetraploid Robinia pseudoacacia and its reasons. It was found that in the ovule development period of tetraploid R. pseudoacacia from 15 d after coronal openin...This study was conducted to investigate ovule abortion of tetraploid Robinia pseudoacacia and its reasons. It was found that in the ovule development period of tetraploid R. pseudoacacia from 15 d after coronal opening, the levels of growth-promoting endogenous hormones in abortive ovules were lower than those in normal ovules, and the level of a growth-inhibiting hormone was always higher than those in normal ovules, indicating that ovule abortion of tetraploid R. pseudoacacia might be related to abnormal endogenous phytohormones in ovules. This study laid a foundation for further study on highly sterile phenomenon of tetraploid R. pseudoacacia seeds.展开更多
[Objective] The aim was to study characters of pollen grains of tetraploid lines and diploid control line of Chrysanthemum cinerariifolium (Trev.) Vis.,morphological characters,fertility of pollen grain and germinatio...[Objective] The aim was to study characters of pollen grains of tetraploid lines and diploid control line of Chrysanthemum cinerariifolium (Trev.) Vis.,morphological characters,fertility of pollen grain and germination percentage of seeds. [Method] Pollen grains were prepared by sulphuric acid-acetyl oxide decomposition method. The lengths of polar axis and equatorial axis of pollen grains were determined with general optical microscope. The morphology of pollen grains was observed with SEM (scanning electron microscope) and the typical visual fields of 2 500× (or 2 000×),7 000× were taken pictures. [Result] Comparing with the diploid control line,the pollen grains of five tetraploid lines which were tested were different from the diploid line in morphology,sculpture,etc.. 4 of the 5 tested samples were significant larger than the diploid line in size and one was similar to the diploid line. [Conclusion] This research provided references for breeding tetraploid improved varieties of Chrysanthemum cinerariifolium (Trev.) Vis. with good fertility and high germination percentage.展开更多
Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip (cv. Aijiaohuang, 4n) and i...Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip (cv. Aijiaohuang, 4n) and its diploid progenitor (cv. Aijiaohuang, 2n) were evaluated for their tolerance to salinity stress via investigations on a group of physiological parameters. The results indicate that the tetraploid turnip exhibit better adaptation to a high concentration salt medium (200 mmol L-1), as evidenced by a less-affected germination rate and a healthier morphological appearance at the seedling stage. Furthermore, an extension of salinity stress up to a certain period of time at the 5-7-leaf stage shows differences between the tetraploid turnip and its diploid progenitor. The former had a higher K+/Na+ ratio in the roots, higher glutathione concentration and antioxidant activities in the leaves, and smaller reductions in photosynthetic capacity in terms of leaf chlorophyll content. Studies on the differences between an autopolyploid and its respective relative, from which the autopolyploid originated, in terms of their tolerance to salinity and/or other abiotic stresses, have remained rather limited. The comparison is interesting due to a homogenous genetic background.展开更多
Common wheat is an important and widely cultivated food crop throughout the world.Much progress has been made in regard to wheat genome sequencing in the last decade.Starting from the sequencing of single chromosomes/...Common wheat is an important and widely cultivated food crop throughout the world.Much progress has been made in regard to wheat genome sequencing in the last decade.Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists.展开更多
Gossypium hirsutum L., one of the twocultivated tetraploid species in cotton,ischaracterized by its high yield and wideadaptation,while G.barbadense L.,anothercultivated one,by its super fiber properties.Substitution ...Gossypium hirsutum L., one of the twocultivated tetraploid species in cotton,ischaracterized by its high yield and wideadaptation,while G.barbadense L.,anothercultivated one,by its super fiber properties.Substitution line in which one pair of展开更多
Tuber starch content and plant maturity are two important agronomic traits of potato. To investigate the complex genetic basis of these traits in the cultivated potato, as well as the relationship between them, we dev...Tuber starch content and plant maturity are two important agronomic traits of potato. To investigate the complex genetic basis of these traits in the cultivated potato, as well as the relationship between them, we developed a linkage map in a tetraploid population of 192 clones derived from the cross Longshu 8 × Zaodabai and mapped quantitative trait loci(QTL) for tuber starch content and plant maturity using data collected in three diverse environments over two years. We detected eleven QTL for tuber starch content distributed on seven chromosomes, of which four, on chromosomes I, II, and VIII, were expressed in at least three environments. For plant maturity, we identified six QTL on chromosomes II, IV,V, VII, and XI, one of which, on chromosome V, showed LOD peaks ranging from 45.2 to 62.5 cM and explained 21.6%–26.6% of phenotypic variation was expressed in five of the six environments. Because the reproducible QTL for plant maturity and tuber starch content mapped to different chromosomes and neither overlapping QTL, nor any genetic interaction between QTL were detected, we infer that tuber starch content and plant maturity are controlled by independent genetic loci. This inference supports the prospect of breeding potato for both early maturity and high starch content.展开更多
Betulin, oleanolic acid, and betulinic acid are naturally occurring pentacyclic triterpenoids that have significant medicinal value. Considerable amounts of these triterpenoids are available in the outer bark of white...Betulin, oleanolic acid, and betulinic acid are naturally occurring pentacyclic triterpenoids that have significant medicinal value. Considerable amounts of these triterpenoids are available in the outer bark of white birch. In this study, we used ultrasound-assisted extraction (UAE) to extract triterpenoids from birch bark rapidly and with high efficiency. Using high performance liquid chro- matography (HPLC), three types of triterpenoids were separated and detected. We examined the differences among triterpenoids extracted from diploid versus tetra- ploid white birch. Then, we used factor analysis to screen out tetraploid white birches with comprehensively excel- lent performance. The results indicate that the optimum conditions for extraction include the use of ethanol as an extraction solvent, a solid-to-liquid ratio of 0.1 g/10 ml, ultrasonic power set at 100 W, a temperature of 60 ℃ and an extraction time of 15 min. A reversed-phase C18 col- umn (4.6 mm × 250 mm × 5 μm) with a column tem- perature of 30 ℃ and the mobile phase composed of A (acetonitrile) and B (0.1% aqueous phosphoric acid, v/v) at a flow rate of 0.5 ml/min were used, and the detection wavelength was 195 nm. No significant difference wasobserved between diploid and tetraploid white birch in terms of the content of three types of triterpenoids (at a confidence level of 0.05). As triterpenoid content, height, and DBH (diameter at breast height) are strongly interre- lated, we used factor analysis to evaluate all individuals, and we screened out six plus trees with excellent com- prehensive characters.展开更多
Rose is one of the most important ornamental and economic plants in the world.Modern rose cultivars are primarily tetraploid,and during meiosis,they may exhibit double reduction or preferential chromosome pairing.Ther...Rose is one of the most important ornamental and economic plants in the world.Modern rose cultivars are primarily tetraploid,and during meiosis,they may exhibit double reduction or preferential chromosome pairing.Therefore,the construction of a high density genetic map of tetraploid rose is both challenging and instructive.In this study,a tetraploid rose population was used to conduct a genetic analysis using genome sequencing.A total of 17382 single nucleotide polymorphism(SNP)markers were selected from 2308042 detected SNPs.Combined with 440 previously developed simple sequence repeats(SSR)and amplified fragment length polymorphism(AFLP)markers,a marker dosage of 6885 high quality markers was successfully assigned by GATK software in the tetraploid model.These markers were used in the construction of a high density genetic map,containing the expected seven linkage groups with 6842 markers,a total map length of 1158.9 c M,and an average inter-marker distance of 0.18 c M.Quantitative trait locus(QTL)analysis was subsequently performed to characterize the genetic architecture of petal number and flower diameter.One major QTL(qpnum-3-1)was detected for petal number in three consecutive years,which explained 20.18–22.11%of the variation in petal number.Four QTLs were detected for flower diameter;the main locus,qfdia-2-2,was identified in two consecutive years.Our results will benefit the molecular marker-assisted breeding of modern rose cultivars.In addition,this study provides a guide for the genetic and QTL analysis of autotetraploid plants using sequencing-based genotyping methods.展开更多
Preparation of silage is a common method to preserve green forage. It plays an important role in improving forage utilization, solving the problem of forage provision and meeting the nutritional needs of livestock in ...Preparation of silage is a common method to preserve green forage. It plays an important role in improving forage utilization, solving the problem of forage provision and meeting the nutritional needs of livestock in winter and spring. The effects of various supplements on tetraploid black locust (Robinia pseudoacacia L.) silage were studied by analyzing its color, odor, texture, pH value, the composition and amount of organic acids, the ammonia-N/total-N ratio, crude protein, neutral detergent fibers and acid detergent fibers. Our results show that the silage quality of wilted tetraploid R. pseudoacacia preserved alone is acceptable, while adding brown sugar and Yishengkang to tetraploid R. pseudoacacia foliage improved its quality. The treatments consisting of the tet- raploid R. pseudoacacia mixed with 33% and 50% corn stalk achieved the best silage quality in terms ofpH value (p 〈 0.01), amount of lactic acid (p 〈 0.01), the ammonia-N/total-N ratio (p 〈 0.01) and the fermentation quality. These treatments also resulted in a high content of crude protein and lower amounts of acid detergent fibers. The treatment consisting of the tetraploid R. pseudoacacia mixed with 20% corn stalk was also good in the quality of its fermentation.展开更多
The manipulation of the chromosome set for commercially valuable marine animals is important for enhancing aquacultural production. In this study, triploid and tetraploid sea cucumber Apostichopus japonicus were induc...The manipulation of the chromosome set for commercially valuable marine animals is important for enhancing aquacultural production. In this study, triploid and tetraploid sea cucumber Apostichopus japonicus were induced by hydrostatic pressure shock, and the conditions of appropriate induction were tested with different starting times, and hydrostatic pressure intensities and durations. The highest rate of triploid induction reached 20% and that of tetraploid was 60%. In consideration of the survival rate and hatch rate, the appropriate treatment for triploid was 55 Mpa of hydrostatic pressure for 5 rain at 55 min after fertilization (a.f.), while for tetraploid it was 60 Mpa for 5 rain at 61 min a.f. The triploid of the sea cucumber could survive through the pelagic larval stage and attachment stage, and develop like the control group of the experiment. The tetraploid, however, could not survive the attachment stage.展开更多
Somatic nuclei can be reprogrammed into a pluripotent state by nuclear transfer, cell fusion and expression of transcription factors. However, these reprogramming processes are very inefficient, which has greatly hind...Somatic nuclei can be reprogrammed into a pluripotent state by nuclear transfer, cell fusion and expression of transcription factors. However, these reprogramming processes are very inefficient, which has greatly hindered efforts to elucidate the underlying molecular mechanisms. Here, we report a new reprogramming strategy that combines the advantages of all three reprogramming methodologies into one process. We injected nuclei from cumulus cells into intact MII oocytes. Following activation, 80% of the reconstructed embryos developed to the blastocyst stage, and tetraploid (4N) embryonic stem (ES) cell lines were generated at a rate of 30% per reconstructed oocyte. We also generated triploid (3N) ES cells after injection of somatic nuclei into activated oocytes. 4N and 3N ES cells expressed pluripotent markers and differentiated into cell types of three embryonic germ layers in vivo. Moreover, all ES cells generated histocompatible, differentiated cells after being engrafted in immunocompetent B6D2F1 mice, showing that ES cells derived from this reprogramming strategy might serve as a source of genetically tailored tissues for transplantation. Thus, we have established a simple and highly efficient reprogramming procedure that provides a system for investigating the molecular mechanisms involved in somatic reprogramming.展开更多
基金This study was in part supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Education Ministry of Chinaa grant from the Department of Energy Biosciences,USA,to University of Columbia,JB.
文摘The maize quadraplex tetraploids and duplex tetraploids were developed using Kato’s protocols. The phenotype ofheterosis and inbreeding depression over generations in their parents and progenies of F1, F2 and F3 were investigated.The results indicated that different duplex tetraploids have different genetic backgrounds, but they acquire maximumheterosis at same traits, such as the leaf length, leaf width, culm circumference and days to flowering. P.N. rises muchfaster from the F2 to F3 segment than the A.W. does for the plant height in duplex tetraploids. In comparing duplex andquadraplex over a generation the quadriplex is showing the greatest heterosis in plant height, leaf height, leaf width anddays to flowering. Most of the examples achieve the maximum heterosis at Qu F2, with the exception of culm circumference,which achieves greatest heterosis at PNAW F1. Meanwhile, this experiment shows that quadraplex tetraploids has distinctadditional favorable alleles that are not contained in duplex tetraploid, this is demonstrated by the heterosis found incrosses between the two duplex tetraploid. This finding helps explain quadraploids superiority and unique breedingbehavior, in which, the progressive heterosis and inbreeding depression in maize are due mainly to linkage disequilibrium.The severe inbreeding depression in duplex tetraploids is due mainly to the rapid loss of complementary chromosomes orgenes interactions in the first few generation of inbreeding. Correspondingly, the progressive heterosis in quadraplextetraploids is due mainly to a progressive increase in complementarities of homologous chromosomes or genes interactions.Greater complementarities of homologous chromosomes or genes interactions in tetraploids maize alse helps explainrecent molecular biology research indicating that some of traits in quadraplex tetraploids are more responsive to geneticdiversity than in duplex tetraploids. In addition, the dosage effect of polyploid in relation to the genetic basis of heterosisand inbreeding depression were discussed also.
基金supported by the National Natural Science Foundation of China(Grant Nos.31370660 and 31670673)the 111 Project(B16010)
文摘Betula platyphylla Sukaczev tetraploids have significantly larger leaf, fruit and stoma (gigantic phenotype) than diploids of the same species;however, the mechanism underlying this difference remains unclear. Tetraploid B. platyphylla transcriptome data have indicated that the expression of genes related to indole-3-acetic acid (IAA) biosynthesis and signal transduction was altered after genome duplication. IAA exerts pleiotropic effects on growth and development by inducing the expression of Aux/IAA. We identified 20 Aux/IAA genes (BpIAA1– BpIAA20) in B. platyphylla distributed across 10 chromosomes. Multiple alignment and motif analyses revealed that nine BpIAA proteins shared all four conserved domains. Phylogenetic analysis indicated that Aux/IAA families were divided into four subfamilies and that there were two pairs of BpIAA sister genes. The BpIAAs were differentially expressed in diploids and tetraploids. Moreover, the expression levels of the nine BpIAA genes were specifically up-regulated in tetraploids from June to September compared with May (except August 5th) in tetraploids, while they were down-regulated in diploids. IAA levels were more than twofold higher in tetraploids than diploids during the vegetative season. These results indicate that genome duplication of B. platyphylla caused the up-regulated of genes involved in IAA synthesis, and the increased concentration of IAA may induce the constitutive expression of 20 BpIAA genes. Therefore, the significant changes in the expression patterns of the BpIAAs contributed to the gigantic phenotype of tetraploids to some extent. Our research sheds light on the phenotypic variations observed in B. platyphylla tetraploids.
基金Supported by Scientific and Technological Achievements Transformation Guidance Special Project of Shanxi Province(202304021301054)Science and Technology Innovation Promotion Project of Shanxi Agricultural University(CXGC2023001)Biological Breeding Project of Shanxi Agricultural University in the 14^(th) Five-Year Plan(YZGC106).
文摘[Objectives]This study was conducted to actively carry out the breeding of new tetraploid common buckwheat varieties and its supporting breeding techniques.[Methods]Pintianqiao 3 is a new tetraploid common buckwheat variety developed by College of Agriculture of Shanxi Agricultural University and Agricultural Genetic Resources Center of Shanxi Agricultural University,using‘Pintianqiao 1’as the parent,through mutation treatment with 0.2%colchicine aqueous solution,grain selection,plant selection,isolation and identification,variety comparison,regional test and field investigation.The variety has chromosomes 2n=4X=32,and shows a spring sowing period of 101 d and a summer sowing period of 80 d,large flowers and seeds(with a 1000-grain weight of 41.4 g),and good resistance to lodging.[Results]From 2021 to 2022,Pintianqiao 3 participated in the independent joint regional test of common buckwheat varieties in Shanxi Province,and the average yield in 10 test positions was 1.8 kg,equivalent to 1800 kg/hm^(2),which was 8.4%higher than the control.It passed the field investigation conducted by Shanxi provincial expert group for identification of non-major crop varieties in Dongyang and Kelan experimental sites on September 2-3,2022.On January 4,2024,it passed the preliminary examination of Shanxi Provincial Crop Variety Approval Committee.The seed reproduction technique of Pintianqiao 3 including land selection,preparation before sowing,sowing,field management and timely harvesting has been developed.[Conclusions]This study provides technical support for the demonstration and popularization of this new variety.
基金Project supported by the president grant from Academia Sinica.
文摘1 Introduction Gynogenesis is a rare reproductive mode in fish. Among a few of species reproduced by this method, silver crucian carp (Carassius auratus gibelio) is the most special one. The specialities mainly include the following two aspects: (ⅰ)The crucian carp exists as a bisexual population which can be reproduced by natural gynogenesis, because there are both gynogenetic function and certain proportion of males in the offsprings; (ⅱ)
基金supported by the National Natural Science Foundation of China(32071728)。
文摘Lectins are natural proteins in animals,plants,and microorganisms and can be divided into 12 families.These lectins play important roles in various environmental stresses.Some polyploid plants show tolerance to environmental stresses and to insect pests.However,the mechanism of stress tolerance is unclear.Tetraploid Robinia pseudoacacia(4×)under salt stress showed higher tolerance than diploid R.pseudoacacia(2×).As lectin can improve stress tolerance,it was questioned whether the stress resistance of polyploid plants was related to the lectin protein.In this study,salt resistance of lectin gene TRpL1 was verified by its over-expression in plants.In addition,salt resistance of lectin protein by E.coli strains was detected.The data revealed that the over-expression transgenic plants of TRpL1 showed better salt tolerance than control plants under salt stress,and the TRpL1-expressing strain also grew better in the medium with added NaCl.Therefore,tetraploid plants can resist salt stress through TRpL1 protein regulation.
基金supported by the Science and Technology Research Project of Gansu Province[20JR5RA555 and145RTSA012]the Natural Science Foundation of Shaanxi Province[2020JQ-541]+1 种基金the National Natural Science Foundation of China[31870851 and 12175289]the Youth Innovation Promotion Association CAS[2021415]
文摘Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237(MLN)and/or p21 depletion by small interfering RNA(si RNA).Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator(FUCCI)system combined with histone H3 phosphorylation at Ser10(p S10 H3)detection.Senescence was assessed using senescence-associated-β-galactosidase(SA-β-Gal),Ki67,andγH2AX staining.Protein expression levels were determined using western blotting.Results Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment.The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells,ultimately leading to senescence in G1.During this process,the p53/p21 pathway is hyperactivated.Accompanying p21 accumulation,Aurora A kinase levels declined sharply.MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.Conclusion Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation,leading to senescence via mitotic skipping.
基金National Key R&D Program of China(2019YFD1001300,2019YFD1001303)the Earmarked Fund for China Agriculture Research System(CARS-08-02A)the Opening Project of Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs,Chengdu University(No.2018CC5).
文摘Tartary buckwheat(Fagopyrum tataricum)is a dual-purpose medicinal and food crop grown for its high contents of functional compounds and abundant nutrients.Although studies have shown the differences of total flavonoid content in Tartary buckwheat at different ploidy levels,the composition of flavonoid and its regulatory mechanisms are largely unknown.In this study,the leaf metabolome and transcriptome of diploid and tetraploid accessions of Tartary buckwheat were analyzed to gain insight into the impact of polyploidization on comparative secondary metabolite composition and molecular regulatory mechanism.Based on a widely targeted metabolomics analysis,a total of 792 metabolites were identified,including 127 flavonoids.The accumulation of 127 metabolites and expression of 3871 genes differed significantly between diploid and tetraploid Tartary buckwheat.Integrated metabolomics and transcriptome analysis revealed that chromosome doubling up-regulated the expression of upstream genes in the flavonoid biosynthesis pathway to promote the accumulation of flavonoids.The present results contribute to elucidation of the molecular mechanism of phenotypic variation associated with polyploidy in Tartary buckwheat.The findings provide a reference for further studies on phenotypic traits in polyploid Tartary buckwheat,the cloning of crucial regulatory genes,and utilization of genetic engineering technologies in the breeding of Tartary buckwheat.
基金funded by the National Natural Science Foundation of China(31621005,32072023)National Key R&D Program of China(2021YFE0101200)PSF/CRP/18th Protocol(07)。
文摘Background The cyclic nucleotide-gated channel(CNGC)gene family plays a significant role in the uptake of both essential and toxic cations,and has a role in enhancing tolerance to various forms of abiotic stresses as well as the modulation of the heavy metal toxicity to plant through the absorption of heavy metals.Results A complete genome-wide identification and functional characterization of the cotton CNGC genes was carried out,in which 55,28,and 29 CNGC genes were identified in Gossypium hirsutum,G.raimondii,and G.arboreum,respectively.The protein encoded by the CNGC genes exhibited GRAVY value below zero,indicating their hydrophilic property.CNGC genes were unevenly distributed in 19 out of 26 chromosomes,in which the highest density were observed on Ah05,with 8 genes.High gene coverage was observed among the diploid cotton species,with CNGC genes mapped on all A chromosomes and on 11 out of 13 of D chromosomes.The majority of CNGC proteins were localized in the endoplasmic reticulum,nucleus,and plasma membrane.Gene expression analysis revealed the up-regulation of Gh_A01G0520(CNGC4)and Gh_D13G1974(CNGC5)across various forms of abiotic stresses.Moreover,down-regulation of Gh_A01G0520(CNGC4)and Gh_D13G1974(CNGC5)in CNGCs silenced plants caused the significantly reduced ability to tolerate drought and salt stresses.All CNGCs silenced plants were recorded to have significantly low content of antioxidants but relatively higher content of oxidant,including MDA and H_(2)O_(2).Furthermore,SPAD,CMS(cell membrane stability),ELWL(excised leaf water loss),SDW(shoot dry matter weight),and RDW(root dry matter weight)were all lower in CNGCs silenced plants compared with the wild type plants.Conclusion Significant reduction in antioxidant content and negative effects of physiological and morphological characters in CNGCs silenced plants has revealed the novel role of CNGC genes in enhancing cell integrity under abiotic stress conditions.These results provide vital information that will expand our understanding of the CNGC gene family in cotton and other plants,thus promoting the integration of these genes in the development of the environmental resilient plants.
文摘[Objective] This study was conducted to detect the variation induction ability of ethyl methanesulfonate (EMS), to construct a mutant population. [Method] 0.6%, 1.2% and 2.4% EMS solutions were used for inducing 2 400 stem segments of test-tube plantlets of tetraploid potato Longshu 7, and an asexual mutant population including leaf, plant type, stem, stolon, glandular hair traits was constructed. [Result] Twenty two mutation types, i.e. etiolated plantlet, albino plantlet, leaf-color gradient, etiolated vein, wrapped bud, lobed leaf, crinkled leaf, deformed compound leaf, cluster, branch, top enlargement, top bifurcation, succulent, stolon distortion, stolon shift, early tuberization, hair stolon, stem enlargement, vine stem, foliage stem, glandular hair and whorled leaf types were observed in total. There were 52 mutant single plants in total, with a mutation rate of 21.67‰. [Conclusion] The glandular hair, clustered short-stem, branched stem and early tuberization types of mutants have higher application value, and are anticipated to be used in potato functional genome research, gene improvement and germplasm innovation.
文摘This study was conducted to investigate ovule abortion of tetraploid Robinia pseudoacacia and its reasons. It was found that in the ovule development period of tetraploid R. pseudoacacia from 15 d after coronal opening, the levels of growth-promoting endogenous hormones in abortive ovules were lower than those in normal ovules, and the level of a growth-inhibiting hormone was always higher than those in normal ovules, indicating that ovule abortion of tetraploid R. pseudoacacia might be related to abnormal endogenous phytohormones in ovules. This study laid a foundation for further study on highly sterile phenomenon of tetraploid R. pseudoacacia seeds.
基金Supported by the Fundamental Research Funds for the Central Universities (SWJTU09BR221)~~
文摘[Objective] The aim was to study characters of pollen grains of tetraploid lines and diploid control line of Chrysanthemum cinerariifolium (Trev.) Vis.,morphological characters,fertility of pollen grain and germination percentage of seeds. [Method] Pollen grains were prepared by sulphuric acid-acetyl oxide decomposition method. The lengths of polar axis and equatorial axis of pollen grains were determined with general optical microscope. The morphology of pollen grains was observed with SEM (scanning electron microscope) and the typical visual fields of 2 500× (or 2 000×),7 000× were taken pictures. [Result] Comparing with the diploid control line,the pollen grains of five tetraploid lines which were tested were different from the diploid line in morphology,sculpture,etc.. 4 of the 5 tested samples were significant larger than the diploid line in size and one was similar to the diploid line. [Conclusion] This research provided references for breeding tetraploid improved varieties of Chrysanthemum cinerariifolium (Trev.) Vis. with good fertility and high germination percentage.
基金supported by the Special Grand National Science and Technology Project, China(2009ZX08009-076B)the Natural Science Foundation of China (30971700)the Natural Science Foundation of Zhejiang Province, China (Z3100130)
文摘Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip (cv. Aijiaohuang, 4n) and its diploid progenitor (cv. Aijiaohuang, 2n) were evaluated for their tolerance to salinity stress via investigations on a group of physiological parameters. The results indicate that the tetraploid turnip exhibit better adaptation to a high concentration salt medium (200 mmol L-1), as evidenced by a less-affected germination rate and a healthier morphological appearance at the seedling stage. Furthermore, an extension of salinity stress up to a certain period of time at the 5-7-leaf stage shows differences between the tetraploid turnip and its diploid progenitor. The former had a higher K+/Na+ ratio in the roots, higher glutathione concentration and antioxidant activities in the leaves, and smaller reductions in photosynthetic capacity in terms of leaf chlorophyll content. Studies on the differences between an autopolyploid and its respective relative, from which the autopolyploid originated, in terms of their tolerance to salinity and/or other abiotic stresses, have remained rather limited. The comparison is interesting due to a homogenous genetic background.
基金supported by the Chinese Academy of Sciences (QYZDJ-SSW-SMC001)the National Key Research and Development Program of China (2016YFD0101004)
文摘Common wheat is an important and widely cultivated food crop throughout the world.Much progress has been made in regard to wheat genome sequencing in the last decade.Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists.
文摘Gossypium hirsutum L., one of the twocultivated tetraploid species in cotton,ischaracterized by its high yield and wideadaptation,while G.barbadense L.,anothercultivated one,by its super fiber properties.Substitution line in which one pair of
基金supported by Earmarked Fund for China Agriculture Research System(CARS-09-P07)the National Natural Science Foundation of China(31160299,31760410)
文摘Tuber starch content and plant maturity are two important agronomic traits of potato. To investigate the complex genetic basis of these traits in the cultivated potato, as well as the relationship between them, we developed a linkage map in a tetraploid population of 192 clones derived from the cross Longshu 8 × Zaodabai and mapped quantitative trait loci(QTL) for tuber starch content and plant maturity using data collected in three diverse environments over two years. We detected eleven QTL for tuber starch content distributed on seven chromosomes, of which four, on chromosomes I, II, and VIII, were expressed in at least three environments. For plant maturity, we identified six QTL on chromosomes II, IV,V, VII, and XI, one of which, on chromosome V, showed LOD peaks ranging from 45.2 to 62.5 cM and explained 21.6%–26.6% of phenotypic variation was expressed in five of the six environments. Because the reproducible QTL for plant maturity and tuber starch content mapped to different chromosomes and neither overlapping QTL, nor any genetic interaction between QTL were detected, we infer that tuber starch content and plant maturity are controlled by independent genetic loci. This inference supports the prospect of breeding potato for both early maturity and high starch content.
基金financially supported by National Forestry Department Public Benefit Research Foundation of China(201204302)
文摘Betulin, oleanolic acid, and betulinic acid are naturally occurring pentacyclic triterpenoids that have significant medicinal value. Considerable amounts of these triterpenoids are available in the outer bark of white birch. In this study, we used ultrasound-assisted extraction (UAE) to extract triterpenoids from birch bark rapidly and with high efficiency. Using high performance liquid chro- matography (HPLC), three types of triterpenoids were separated and detected. We examined the differences among triterpenoids extracted from diploid versus tetra- ploid white birch. Then, we used factor analysis to screen out tetraploid white birches with comprehensively excel- lent performance. The results indicate that the optimum conditions for extraction include the use of ethanol as an extraction solvent, a solid-to-liquid ratio of 0.1 g/10 ml, ultrasonic power set at 100 W, a temperature of 60 ℃ and an extraction time of 15 min. A reversed-phase C18 col- umn (4.6 mm × 250 mm × 5 μm) with a column tem- perature of 30 ℃ and the mobile phase composed of A (acetonitrile) and B (0.1% aqueous phosphoric acid, v/v) at a flow rate of 0.5 ml/min were used, and the detection wavelength was 195 nm. No significant difference wasobserved between diploid and tetraploid white birch in terms of the content of three types of triterpenoids (at a confidence level of 0.05). As triterpenoid content, height, and DBH (diameter at breast height) are strongly interre- lated, we used factor analysis to evaluate all individuals, and we screened out six plus trees with excellent com- prehensive characters.
基金the National Natural Science Foundation of China(31600565)the Fundamental Research Funds for the Central Public Welfare Research Institutes,China(ZZ13-YQ-053)+1 种基金the Special Fund for Beijing Common Construction Project,ChinaDr.Peter M.Bourke from Plant Breeding,Wageningen University&Research,The Netherlands,was partly funded through the TKI polyploids project(BO-26.03-009-004 and BO-50-002-022)。
文摘Rose is one of the most important ornamental and economic plants in the world.Modern rose cultivars are primarily tetraploid,and during meiosis,they may exhibit double reduction or preferential chromosome pairing.Therefore,the construction of a high density genetic map of tetraploid rose is both challenging and instructive.In this study,a tetraploid rose population was used to conduct a genetic analysis using genome sequencing.A total of 17382 single nucleotide polymorphism(SNP)markers were selected from 2308042 detected SNPs.Combined with 440 previously developed simple sequence repeats(SSR)and amplified fragment length polymorphism(AFLP)markers,a marker dosage of 6885 high quality markers was successfully assigned by GATK software in the tetraploid model.These markers were used in the construction of a high density genetic map,containing the expected seven linkage groups with 6842 markers,a total map length of 1158.9 c M,and an average inter-marker distance of 0.18 c M.Quantitative trait locus(QTL)analysis was subsequently performed to characterize the genetic architecture of petal number and flower diameter.One major QTL(qpnum-3-1)was detected for petal number in three consecutive years,which explained 20.18–22.11%of the variation in petal number.Four QTLs were detected for flower diameter;the main locus,qfdia-2-2,was identified in two consecutive years.Our results will benefit the molecular marker-assisted breeding of modern rose cultivars.In addition,this study provides a guide for the genetic and QTL analysis of autotetraploid plants using sequencing-based genotyping methods.
基金supported by the State Forestry Administration of China (Nos.2003-5-2 and 2004-04)
文摘Preparation of silage is a common method to preserve green forage. It plays an important role in improving forage utilization, solving the problem of forage provision and meeting the nutritional needs of livestock in winter and spring. The effects of various supplements on tetraploid black locust (Robinia pseudoacacia L.) silage were studied by analyzing its color, odor, texture, pH value, the composition and amount of organic acids, the ammonia-N/total-N ratio, crude protein, neutral detergent fibers and acid detergent fibers. Our results show that the silage quality of wilted tetraploid R. pseudoacacia preserved alone is acceptable, while adding brown sugar and Yishengkang to tetraploid R. pseudoacacia foliage improved its quality. The treatments consisting of the tet- raploid R. pseudoacacia mixed with 33% and 50% corn stalk achieved the best silage quality in terms ofpH value (p 〈 0.01), amount of lactic acid (p 〈 0.01), the ammonia-N/total-N ratio (p 〈 0.01) and the fermentation quality. These treatments also resulted in a high content of crude protein and lower amounts of acid detergent fibers. The treatment consisting of the tetraploid R. pseudoacacia mixed with 20% corn stalk was also good in the quality of its fermentation.
基金the National High-Tech Research and Development Program of China (863 Program, No.2506AA10A411)by the Dalian Natural Science Foundation (No. 99058)
文摘The manipulation of the chromosome set for commercially valuable marine animals is important for enhancing aquacultural production. In this study, triploid and tetraploid sea cucumber Apostichopus japonicus were induced by hydrostatic pressure shock, and the conditions of appropriate induction were tested with different starting times, and hydrostatic pressure intensities and durations. The highest rate of triploid induction reached 20% and that of tetraploid was 60%. In consideration of the survival rate and hatch rate, the appropriate treatment for triploid was 55 Mpa of hydrostatic pressure for 5 rain at 55 min after fertilization (a.f.), while for tetraploid it was 60 Mpa for 5 rain at 61 min a.f. The triploid of the sea cucumber could survive through the pelagic larval stage and attachment stage, and develop like the control group of the experiment. The tetraploid, however, could not survive the attachment stage.
文摘Somatic nuclei can be reprogrammed into a pluripotent state by nuclear transfer, cell fusion and expression of transcription factors. However, these reprogramming processes are very inefficient, which has greatly hindered efforts to elucidate the underlying molecular mechanisms. Here, we report a new reprogramming strategy that combines the advantages of all three reprogramming methodologies into one process. We injected nuclei from cumulus cells into intact MII oocytes. Following activation, 80% of the reconstructed embryos developed to the blastocyst stage, and tetraploid (4N) embryonic stem (ES) cell lines were generated at a rate of 30% per reconstructed oocyte. We also generated triploid (3N) ES cells after injection of somatic nuclei into activated oocytes. 4N and 3N ES cells expressed pluripotent markers and differentiated into cell types of three embryonic germ layers in vivo. Moreover, all ES cells generated histocompatible, differentiated cells after being engrafted in immunocompetent B6D2F1 mice, showing that ES cells derived from this reprogramming strategy might serve as a source of genetically tailored tissues for transplantation. Thus, we have established a simple and highly efficient reprogramming procedure that provides a system for investigating the molecular mechanisms involved in somatic reprogramming.