期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Orbit Weighting Scheme in the Context of Vector Space Information Retrieval
1
作者 Ahmad Ababneh Yousef Sanjalawe +2 位作者 Salam Fraihat Salam Al-E’mari Hamzah Alqudah 《Computers, Materials & Continua》 SCIE EI 2024年第7期1347-1379,共33页
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem... This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies. 展开更多
关键词 Information retrieval orbit weighting scheme semantic text analysis Tf-Idf weighting scheme vector space model
下载PDF
An Optimized Chinese Filtering Model Using Value Scale Extended Text Vector
2
作者 Siyu Lu Ligao Cai +5 位作者 Zhixin Liu Shan Liu Bo Yang Lirong Yin Mingzhe Liu Wenfeng Zheng 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1881-1899,共19页
With the development of Internet technology,the explosive growth of Internet information presentation has led to difficulty in filtering effective information.Finding a model with high accuracy for text classification... With the development of Internet technology,the explosive growth of Internet information presentation has led to difficulty in filtering effective information.Finding a model with high accuracy for text classification has become a critical problem to be solved by text filtering,especially for Chinese texts.This paper selected the manually calibrated Douban movie website comment data for research.First,a text filtering model based on the BP neural network has been built;Second,based on the Term Frequency-Inverse Document Frequency(TF-IDF)vector space model and the doc2vec method,the text word frequency vector and the text semantic vector were obtained respectively,and the text word frequency vector was linearly reduced by the Principal Component Analysis(PCA)method.Third,the text word frequency vector after dimensionality reduction and the text semantic vector were combined,add the text value degree,and the text synthesis vector was constructed.Experiments show that the model combined with text word frequency vector degree after dimensionality reduction,text semantic vector,and text value has reached the highest accuracy of 84.67%. 展开更多
关键词 Chinese text filtering text vector word frequency vectors text semantic vectors value degree BP neural network TF-IDF doc2vec PCA
下载PDF
面向事件本体的医学文本语义关联化研究 被引量:5
3
作者 李跃艳 王昊 +1 位作者 邓三鸿 陈艳 《情报学报》 CSSCI CSCD 北大核心 2022年第5期497-511,共15页
随着互联网医疗的快速发展,数字经济和智能经济成为未来必然发展趋势,医学知识的语义化和规范化是实现智慧医疗和数字医学的重要手段。但现阶段较为成熟的医学本体仅仅描述了一些既定的静态知识,无法揭示医学知识之间的动态关联。因此,... 随着互联网医疗的快速发展,数字经济和智能经济成为未来必然发展趋势,医学知识的语义化和规范化是实现智慧医疗和数字医学的重要手段。但现阶段较为成熟的医学本体仅仅描述了一些既定的静态知识,无法揭示医学知识之间的动态关联。因此,以知识表示和知识组织为出发点,构建符合叙事性文本特征的医学知识结构化表示方法具有十分重要的意义。本文在梳理叙事学理论、事件知识表示的基础上,按照是否具有叙事性特征,将医学文本分为叙事性文本和概念性文本;然后,分别对概念性医学文本和叙事性医学文本进行语义建模与表示,构建基于事件本体的医学知识本体模型;最后,根据本文提出的概念模型,实现SARS-CoV-2病毒入侵过程的语义结构化表示。初步标注的实验结果表明,将事件本体模型迁移到医学文本语义结构化描述中,有助于实现医学文本的深层次表示和知识发现,能更好地描述医学知识之间的动态关联,更好地表征医学对象在时间和空间的动态发展特点。 展开更多
关键词 叙事性文本 事件本体 语义化 规范化
下载PDF
Measuring Similarity of Academic Articles with Semantic Profile and Joint Word Embedding 被引量:11
4
作者 Ming Liu Bo Lang +1 位作者 Zepeng Gu Ahmed Zeeshan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第6期619-632,共14页
Long-document semantic measurement has great significance in many applications such as semantic searchs, plagiarism detection, and automatic technical surveys. However, research efforts have mainly focused on the sema... Long-document semantic measurement has great significance in many applications such as semantic searchs, plagiarism detection, and automatic technical surveys. However, research efforts have mainly focused on the semantic similarity of short texts. Document-level semantic measurement remains an open issue due to problems such as the omission of background knowledge and topic transition. In this paper, we propose a novel semantic matching method for long documents in the academic domain. To accurately represent the general meaning of an academic article, we construct a semantic profile in which key semantic elements such as the research purpose, methodology, and domain are included and enriched. As such, we can obtain the overall semantic similarity of two papers by computing the distance between their profiles. The distances between the concepts of two different semantic profiles are measured by word vectors. To improve the semantic representation quality of word vectors, we propose a joint word-embedding model for incorporating a domain-specific semantic relation constraint into the traditional context constraint. Our experimental results demonstrate that, in the measurement of document semantic similarity, our approach achieves substantial improvement over state-of-the-art methods, and our joint word-embedding model produces significantly better word representations than traditional word-embedding models. 展开更多
关键词 document semantic similarity text understanding semantic enrichment word embedding scientific literature analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部