Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of...Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.展开更多
Along with the increasing demand on exterior wall cladding as a protective cover for the interior elements and an indicator for modernity and architectural innovation,comes the need to develop new cladding materials t...Along with the increasing demand on exterior wall cladding as a protective cover for the interior elements and an indicator for modernity and architectural innovation,comes the need to develop new cladding materials that can replace the old ones and overcome their setbacks.This paper discusses the possibility of replacing stone by textured concrete as a cladding material in order to overcome the main challenges faced stone cladding by comparing them together.The comparison was made based on the main requirements of the cladding materials namely:economic,environmental,social,functional and structural aspects.展开更多
In this study,a machine vision method is proposed to characterize 3D roughness of the textured surface on cylinder liner processed by plateau honing.The least absolute value(L∞)regression robust algorithm and Levenbe...In this study,a machine vision method is proposed to characterize 3D roughness of the textured surface on cylinder liner processed by plateau honing.The least absolute value(L∞)regression robust algorithm and Levenberg-Marquardt(LM)algorithm are employed to reconstruct image reference plane.On this basis,a single-hidden layer feedforward neural network(SLFNN)based on the extreme learning machine(ELM)is employed to model the relationship between high frequency information and 3D roughness.The characteristic parameters of Abbott-Firestone curve and 3D roughness measured by a confocal microscope are used to construct ELM-SLFNN prediction model for 3D roughness.The results indicate that the proposed method can effectively characterize 3D roughness of the textured surface of cylinder liner.展开更多
Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of A...Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.展开更多
Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C)...Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process.展开更多
Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts betw...Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces.展开更多
Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current...Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts.展开更多
Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2...Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2/(V/s) have been prepared by atmosphere pressure chemical vapour deposition (APCVD). These polycrystalline films possess a variable preferred orientation, the polycrystallite sizes and orientations vary with substrate temperature. The substrate temperature and fluorine flow rate dependence of conductivity, Hall mobility and carrier conentration fOr the resultingfilms have been obtained. The temperature dependence of the mobiity and carrier concentrationhave been measured over a temperature range 16~400 K. A systematically theoretical analysis on scattering mechanisms for the highly conductive SnO2 films has been given. Both theoretical analysis and experimental results indicate that for these degenerate, polycrystalline SnO2 :F films in the low temperature range (below 100 K), ionized impurity scattering is main scattering mechanism. However, when the temperature is higher than 100 K, the lattice vibration scattering becomes dominant. The grain boundary scattering makes a small contribution to limit the mobility of the films.展开更多
The use of textured surfaces in lubrication to improve the tribological characteristics has been widely studied. The understanding of the textured surface geometric parameters influences on these tribological characte...The use of textured surfaces in lubrication to improve the tribological characteristics has been widely studied. The understanding of the textured surface geometric parameters influences on these tribological characteristics could help to improve their applications in industry. In this paper, we purpose to analyze the influence of the micro-texture depth on the friction coefficient experimentally. The experiment is conducted using different copper alloy samples have been the first laser textured with different micro-hole depth (40.83 μm and 46.36 μm). A 3D electronic Olympus microscope is used to visualize the shapes of the holes and find the depths. Then, the friction test has been conducted using these samples with the same velocity. The time variation of the friction coefficient is plotted and analyzed. The analysis of time variation of the friction coefficient shows a reduction of friction coefficient with the increase of the micro-hole depth has been observed. In some cases, this reduction is significant.展开更多
Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surface...Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surfaces are still lack of study. By using multiscale method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. The influence of indentation depth, texture shape, texture spacing, and tip radius on the average friction forces and the running-in stages is studied. The results show that the lowest indentation depth can make all the four textured surfaces reach steady state. Surfaces with right-angled trapezoid textures on the right side are better for reducing the running-in stage, and surfaces with right-angled trapezoid textures on the left side are better to reduce wear. Compared with other textured surfaces, the total average friction forces can be reduced by 82.94%–91.49% for the case of the contact between the tip with radius R = 60rand the isosceles trapezoid textured surface. Besides,the total average friction forces increase with the tip radii due to that bigger tip will induce higher contact areas. This research proposes a detailed study on nanoscale reciprocating sliding contacts of textured surfaces, to contribute to design textured surfaces, reduce friction and wear.展开更多
A nonepitaxial (001) textured Fe-Pt alloyed film was obtained by annealing Fe/Pt multilayers in H2. No Such nonepitaxial (001) texture was observed for similar multilayers annealed in N2 atmosphere. Sensitive elec...A nonepitaxial (001) textured Fe-Pt alloyed film was obtained by annealing Fe/Pt multilayers in H2. No Such nonepitaxial (001) texture was observed for similar multilayers annealed in N2 atmosphere. Sensitive electron energy loss spectroscopy and the left shift of the L10 FePt (111) diffr cfion peak indicate oxidation in the N2 annealed samples. The oxidation dramatically degrades the (001) texture of the Fe-Pt fdm and induces the composition change in the alloyed layer. The relation between the texture formation and oxidation was discussed.展开更多
CeO2/YSZ/CeO2 buffer layers were deposited on biaxially textured Ni substrates by pulsed laser deposition. The influence of the processing parameters on the texture development of the seed layer CeO2 was investigated....CeO2/YSZ/CeO2 buffer layers were deposited on biaxially textured Ni substrates by pulsed laser deposition. The influence of the processing parameters on the texture development of the seed layer CeO2 was investigated. Epitaxial films of YBCO were then grown in situ on the CeO2/YSZ (yttria-stabilized ZrO2)/CeO2-buffered Ni substrates. The resulting YBCO conductors exhibited self-fleld critical current density Jc of more than 1 MA/cm^2 at 77K and superconducting transition temperature Tc of about 91K.展开更多
Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoerciviti...Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.展开更多
1 Introduction Generally,we can observe varying degree of ophitic texture or sub-ophitic texture in unbrecciated basaltic eucrites.However,a few unbrecciated basaltic eucritespossess the special characteristic of crys...1 Introduction Generally,we can observe varying degree of ophitic texture or sub-ophitic texture in unbrecciated basaltic eucrites.However,a few unbrecciated basaltic eucritespossess the special characteristic of crystalloblastic texture by high metamorphism,which are called as granoblastic textured basaltic eucrites(Mayne et al.2009,展开更多
Bulk YBa2Cu3O7 samples were prepared by PMP method. Through adjusting ingredients and preparation procedures, a pellet with 3. 5 cm in diameter and 0. 9 cm in thickness was synthesized. A mass of 1. 3 kg on a magnet c...Bulk YBa2Cu3O7 samples were prepared by PMP method. Through adjusting ingredients and preparation procedures, a pellet with 3. 5 cm in diameter and 0. 9 cm in thickness was synthesized. A mass of 1. 3 kg on a magnet can be levitated at about 1 mm height at 77 K. The XRD and SEM indicated that magnetic lifting property can be enhanced by addition of Ag2O and Y2BaCuO5.展开更多
The Absorption and permeability of air-jet textured glass fiber yarn and its fabric and bonded tenacity of the fabric have been studied in relation to the main parameters, air supplied pressure and overfeed ratio.It h...The Absorption and permeability of air-jet textured glass fiber yarn and its fabric and bonded tenacity of the fabric have been studied in relation to the main parameters, air supplied pressure and overfeed ratio.It has been observed that increasing the level of main parameters improves the coated ratio of the textured yarn and its fabric as well as the bonded tenacity of the fabric made of textured yarn. Comparison of absorption or permeability between textured and supplied yarns, and comparison of absorption or permeability and bonded tenacity between the two kinds of fabrics have been elucidated.展开更多
The surface morphology of buffer layer yttrium-stabilized zirconia (YSZ) of YBa2CuaO7-σ (YBCO) high temperature superconducting films relies on a series of controllable experimental parameters. In this work, we f...The surface morphology of buffer layer yttrium-stabilized zirconia (YSZ) of YBa2CuaO7-σ (YBCO) high temperature superconducting films relies on a series of controllable experimental parameters. In this work, we focus on the influence of pulsed laser frequency and target crystalline type on surface morphology of YSZ films deposited by pulsed laser deposition (PLD) on rolling assisted biaxially textured substrate tapes. Usually two kinds of particles are observed in the YSZ layer: randomly distributed ones on the whole film and self-assembled ones along grain boundaries. SEM images are used to prove that particles can be partly removed when choosing dense targets of single crystalline. Lower frequency of pulsed laser also contributes to a smoother film surface. TEM images are used to view the crystalline structure of thin film. Thus we can obtain a basic understanding of how to prepare a particle-free YSZ buffer layer for YBCO in optimized conditions using PLD. The YBCO layer with nice structure and critical current density of around 5 MA/cm2 can be reached on smooth YSZ samples.展开更多
The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thic...The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thick diamond film (80μm) with smooth surface, desirable for practical application in many fields is obtained展开更多
This article presents, on the one hand, the performance of ARC by configurations ITO/Si, MgO/Si, and GeO2/Si. On the other hand, we study the impact of thickness on the reflection of OCTs, because the thickness of OCT...This article presents, on the one hand, the performance of ARC by configurations ITO/Si, MgO/Si, and GeO2/Si. On the other hand, we study the impact of thickness on the reflection of OCTs, because the thickness of OCTs plays an important role on the optical properties and the variation of the reflection and transmission of TCO/Si heterojunctions as a function of thickness is also sown. And the last part of the paper, we will make a comparative study between the performance of silicon textured on the front side and that of silicon where the front side is planar. These two forms of silicon will be covered with ARC. For this, we will use the following materials ITO, MgO, and GeO2 and we represent the variation of the reflection of CAR on a planar surface and on a textured surface as a function of the wavelength. The results show that the reflection is low in textured surface compare to the planar surface.展开更多
Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of ...Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of the American Iron and Steel Institute(AISI)52100 chromium steel,in this work,the effect of laser surface texturing(LST)was analyzed.With the different patterns of circle and ellipse comparing with the untextured samples,the wear behavior was investigated using the pin-on-disc tribometer.The lubricant used for wear analysis is semisolid lithium grease National Lubricating Grease Institute lubricant(SKF NLGI-3).Sliding wear analysis was conducted at different loads of 10 N,30 N and 50 N for the sliding speed of 750 r/min and 1400 r/min.The wear morphology was analyzed using a scanning electron microscope(SEM).The roughness of the samples was found using a white light interferometer.The effect of different patterns like circle and ellipse,alter the friction and wear properties of chromium alloy was observed compared with the untextured samples.LST shows considerable reduction in friction and wear for ellipsoidal pattern compared with the circular pattern because of wear debris and lubricant getting trapped.展开更多
文摘Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.
文摘Along with the increasing demand on exterior wall cladding as a protective cover for the interior elements and an indicator for modernity and architectural innovation,comes the need to develop new cladding materials that can replace the old ones and overcome their setbacks.This paper discusses the possibility of replacing stone by textured concrete as a cladding material in order to overcome the main challenges faced stone cladding by comparing them together.The comparison was made based on the main requirements of the cladding materials namely:economic,environmental,social,functional and structural aspects.
基金Supported by National Natural Science Foundation of China(Grant No.52075438)Key Research and Development Program of Shaanxi Province of China(Grant No.2024GX-YBXM-268)Open Project of State Key Laboratory for Manufacturing Systems Engineering of China(Grant No.sklms2020010).
文摘In this study,a machine vision method is proposed to characterize 3D roughness of the textured surface on cylinder liner processed by plateau honing.The least absolute value(L∞)regression robust algorithm and Levenberg-Marquardt(LM)algorithm are employed to reconstruct image reference plane.On this basis,a single-hidden layer feedforward neural network(SLFNN)based on the extreme learning machine(ELM)is employed to model the relationship between high frequency information and 3D roughness.The characteristic parameters of Abbott-Firestone curve and 3D roughness measured by a confocal microscope are used to construct ELM-SLFNN prediction model for 3D roughness.The results indicate that the proposed method can effectively characterize 3D roughness of the textured surface of cylinder liner.
基金Project(CSTC2010AA4035)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(50504019)supported by the National Natural Science Foundation of China+1 种基金Project(CDJZR11130008)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CDJXS10130001)supported by the Chongqing University Postgraduates'Science and Innovation Fund,China
文摘Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.
基金Projects(51221001,50972121)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Introducing Talents of Discipline to Universities,ChinaProject(11-BZ-2012)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process.
基金supported by National Natural Science Foundation of China(Grant Nos.51205313,50975232)111 Project(Grant No.B13044)Northwestern Polytechnical University Foundation for Fundamental Research,China(Grant No.JC20110249)
文摘Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205313,50975232)Fundamental Research Funds for the Central Universities of China(Grant No.3102014JCS05009)the 111 Project of China(Grant No.B13044)
文摘Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts.
文摘Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2/(V/s) have been prepared by atmosphere pressure chemical vapour deposition (APCVD). These polycrystalline films possess a variable preferred orientation, the polycrystallite sizes and orientations vary with substrate temperature. The substrate temperature and fluorine flow rate dependence of conductivity, Hall mobility and carrier conentration fOr the resultingfilms have been obtained. The temperature dependence of the mobiity and carrier concentrationhave been measured over a temperature range 16~400 K. A systematically theoretical analysis on scattering mechanisms for the highly conductive SnO2 films has been given. Both theoretical analysis and experimental results indicate that for these degenerate, polycrystalline SnO2 :F films in the low temperature range (below 100 K), ionized impurity scattering is main scattering mechanism. However, when the temperature is higher than 100 K, the lattice vibration scattering becomes dominant. The grain boundary scattering makes a small contribution to limit the mobility of the films.
文摘The use of textured surfaces in lubrication to improve the tribological characteristics has been widely studied. The understanding of the textured surface geometric parameters influences on these tribological characteristics could help to improve their applications in industry. In this paper, we purpose to analyze the influence of the micro-texture depth on the friction coefficient experimentally. The experiment is conducted using different copper alloy samples have been the first laser textured with different micro-hole depth (40.83 μm and 46.36 μm). A 3D electronic Olympus microscope is used to visualize the shapes of the holes and find the depths. Then, the friction test has been conducted using these samples with the same velocity. The time variation of the friction coefficient is plotted and analyzed. The analysis of time variation of the friction coefficient shows a reduction of friction coefficient with the increase of the micro-hole depth has been observed. In some cases, this reduction is significant.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675429,51205313)Fundamental Research Funds for the Central Universities,China(Grant No.3102014JCS05009)the 111 Project,China(Grant No.B13044)
文摘Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surfaces are still lack of study. By using multiscale method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. The influence of indentation depth, texture shape, texture spacing, and tip radius on the average friction forces and the running-in stages is studied. The results show that the lowest indentation depth can make all the four textured surfaces reach steady state. Surfaces with right-angled trapezoid textures on the right side are better for reducing the running-in stage, and surfaces with right-angled trapezoid textures on the left side are better to reduce wear. Compared with other textured surfaces, the total average friction forces can be reduced by 82.94%–91.49% for the case of the contact between the tip with radius R = 60rand the isosceles trapezoid textured surface. Besides,the total average friction forces increase with the tip radii due to that bigger tip will induce higher contact areas. This research proposes a detailed study on nanoscale reciprocating sliding contacts of textured surfaces, to contribute to design textured surfaces, reduce friction and wear.
基金This work was financially supported by the National High-Tech Research and Development Program of China ("863" Program, No. 2002AA302103)
文摘A nonepitaxial (001) textured Fe-Pt alloyed film was obtained by annealing Fe/Pt multilayers in H2. No Such nonepitaxial (001) texture was observed for similar multilayers annealed in N2 atmosphere. Sensitive electron energy loss spectroscopy and the left shift of the L10 FePt (111) diffr cfion peak indicate oxidation in the N2 annealed samples. The oxidation dramatically degrades the (001) texture of the Fe-Pt fdm and induces the composition change in the alloyed layer. The relation between the texture formation and oxidation was discussed.
文摘CeO2/YSZ/CeO2 buffer layers were deposited on biaxially textured Ni substrates by pulsed laser deposition. The influence of the processing parameters on the texture development of the seed layer CeO2 was investigated. Epitaxial films of YBCO were then grown in situ on the CeO2/YSZ (yttria-stabilized ZrO2)/CeO2-buffered Ni substrates. The resulting YBCO conductors exhibited self-fleld critical current density Jc of more than 1 MA/cm^2 at 77K and superconducting transition temperature Tc of about 91K.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51171001,51371009 and 50971003the Foundation of Key Laboratory of Neutron Physics of CAEP under Grant No 2014BB02
文摘Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.
基金supported by the National Natural Foundation of China (No. 41173077)
文摘1 Introduction Generally,we can observe varying degree of ophitic texture or sub-ophitic texture in unbrecciated basaltic eucrites.However,a few unbrecciated basaltic eucritespossess the special characteristic of crystalloblastic texture by high metamorphism,which are called as granoblastic textured basaltic eucrites(Mayne et al.2009,
文摘Bulk YBa2Cu3O7 samples were prepared by PMP method. Through adjusting ingredients and preparation procedures, a pellet with 3. 5 cm in diameter and 0. 9 cm in thickness was synthesized. A mass of 1. 3 kg on a magnet can be levitated at about 1 mm height at 77 K. The XRD and SEM indicated that magnetic lifting property can be enhanced by addition of Ag2O and Y2BaCuO5.
文摘The Absorption and permeability of air-jet textured glass fiber yarn and its fabric and bonded tenacity of the fabric have been studied in relation to the main parameters, air supplied pressure and overfeed ratio.It has been observed that increasing the level of main parameters improves the coated ratio of the textured yarn and its fabric as well as the bonded tenacity of the fabric made of textured yarn. Comparison of absorption or permeability between textured and supplied yarns, and comparison of absorption or permeability and bonded tenacity between the two kinds of fabrics have been elucidated.
基金Supported by the ITER Project of the Ministry of Science and Technology of China under Grant No 2011GB113004the Shanghai Commission of Science and Technology under Grant No 11DZ1100402the Youth Fund of the National Natural Science Foundation of China under Grant No 11204174
文摘The surface morphology of buffer layer yttrium-stabilized zirconia (YSZ) of YBa2CuaO7-σ (YBCO) high temperature superconducting films relies on a series of controllable experimental parameters. In this work, we focus on the influence of pulsed laser frequency and target crystalline type on surface morphology of YSZ films deposited by pulsed laser deposition (PLD) on rolling assisted biaxially textured substrate tapes. Usually two kinds of particles are observed in the YSZ layer: randomly distributed ones on the whole film and self-assembled ones along grain boundaries. SEM images are used to prove that particles can be partly removed when choosing dense targets of single crystalline. Lower frequency of pulsed laser also contributes to a smoother film surface. TEM images are used to view the crystalline structure of thin film. Thus we can obtain a basic understanding of how to prepare a particle-free YSZ buffer layer for YBCO in optimized conditions using PLD. The YBCO layer with nice structure and critical current density of around 5 MA/cm2 can be reached on smooth YSZ samples.
文摘The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thick diamond film (80μm) with smooth surface, desirable for practical application in many fields is obtained
文摘This article presents, on the one hand, the performance of ARC by configurations ITO/Si, MgO/Si, and GeO2/Si. On the other hand, we study the impact of thickness on the reflection of OCTs, because the thickness of OCTs plays an important role on the optical properties and the variation of the reflection and transmission of TCO/Si heterojunctions as a function of thickness is also sown. And the last part of the paper, we will make a comparative study between the performance of silicon textured on the front side and that of silicon where the front side is planar. These two forms of silicon will be covered with ARC. For this, we will use the following materials ITO, MgO, and GeO2 and we represent the variation of the reflection of CAR on a planar surface and on a textured surface as a function of the wavelength. The results show that the reflection is low in textured surface compare to the planar surface.
文摘Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of the American Iron and Steel Institute(AISI)52100 chromium steel,in this work,the effect of laser surface texturing(LST)was analyzed.With the different patterns of circle and ellipse comparing with the untextured samples,the wear behavior was investigated using the pin-on-disc tribometer.The lubricant used for wear analysis is semisolid lithium grease National Lubricating Grease Institute lubricant(SKF NLGI-3).Sliding wear analysis was conducted at different loads of 10 N,30 N and 50 N for the sliding speed of 750 r/min and 1400 r/min.The wear morphology was analyzed using a scanning electron microscope(SEM).The roughness of the samples was found using a white light interferometer.The effect of different patterns like circle and ellipse,alter the friction and wear properties of chromium alloy was observed compared with the untextured samples.LST shows considerable reduction in friction and wear for ellipsoidal pattern compared with the circular pattern because of wear debris and lubricant getting trapped.