Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts betw...Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces.展开更多
Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current...Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts.展开更多
Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surface...Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surfaces are still lack of study. By using multiscale method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. The influence of indentation depth, texture shape, texture spacing, and tip radius on the average friction forces and the running-in stages is studied. The results show that the lowest indentation depth can make all the four textured surfaces reach steady state. Surfaces with right-angled trapezoid textures on the right side are better for reducing the running-in stage, and surfaces with right-angled trapezoid textures on the left side are better to reduce wear. Compared with other textured surfaces, the total average friction forces can be reduced by 82.94%–91.49% for the case of the contact between the tip with radius R = 60rand the isosceles trapezoid textured surface. Besides,the total average friction forces increase with the tip radii due to that bigger tip will induce higher contact areas. This research proposes a detailed study on nanoscale reciprocating sliding contacts of textured surfaces, to contribute to design textured surfaces, reduce friction and wear.展开更多
Textured surfaces have been widely applied in many fields due to their excellent functional performances.Although several micro-scale surface texturing techniques have been used to fabricate surface textures,most are ...Textured surfaces have been widely applied in many fields due to their excellent functional performances.Although several micro-scale surface texturing techniques have been used to fabricate surface textures,most are either very expensive,have material limitations,or lack flexibility.In this study,a novel textured surface generation method using vibration-assisted ball-end milling with a non-resonant vibrator is proposed.Firstly,the configuration of the vibration-assisted ball-end milling system is introduced.Then,the trajectories of the cutting edges are modeled and analyzed.Furthermore,an analysis of a non-resonant vibrator is conducted.Finally,surface texture machining experiments are conducted,and the feasibility of the proposed vibration-assisted ball-end milling method for surface texture fabrication is verified.展开更多
A mass-conservative average flow model based on the finite element method(FEM) is introduced to predict the performances of textured surfaces applied in mechanical seals or thrust bearings.In this model,the Jakobsson-...A mass-conservative average flow model based on the finite element method(FEM) is introduced to predict the performances of textured surfaces applied in mechanical seals or thrust bearings.In this model,the Jakobsson-Floberg-Olsson(JFO) boundary conditions are applied to the average flow model for ensuring the mass-conservative law.Moreover,the non-uniform triangular grid is utilized,which can deal with the problem of complex geometric shapes.By adopting the modeling techniques,the model proposed here is capable of dealing with complex textured surfaces.The algorithm is proved correct by the numerical experiment.In addition,the model is employed to gain further insight into the influences of the dimples with different shapes and orientations on smooth and rough surfaces on the load-carrying capacity.展开更多
Surface texturing has been applied to improving the tribological performance of mechanical components for many years. Currently, the researches simulate the film pressure distribution of textured rough surfaces on the...Surface texturing has been applied to improving the tribological performance of mechanical components for many years. Currently, the researches simulate the film pressure distribution of textured rough surfaces on the basis of the average flow model, and however the influence of roughness on the film pressure distribution could not be precisely expressed. Therefore, in order to study the hydrodynamic lubrication of the rough textured surfaces, sinusoidal waves are employed to characterize untextured surfaces. A deterministic model for hydrodynamic lubrication of microdimple textured rough surfaces is developed to predict the distribution of hydrodynamic pressure. By supplementing with the JFO cavitation boundary, the load carrying capacity of the film produced by micro-dimples and roughness is obtained. And the geometric parameters of textured rough surface are optimized to obtain the maximum hydrodynamic lubrication by specifying an optimization goal of the load carrying capacity. The effect of roughness on the hydrodynamic pressure of surface texture is significant and the load carrying capacity decreases with the increase of the roughness ratio because the roughness greatly suppresses the hydrodynamic effect of dimples. It shows that the roughness ratio of surface may be as small as possible to suppress the effect of hydrodynamic lubrication. Additionally,there are the optimum values of the micro-dimple depth and area density to maximize the load carrying capacity for any given value of the roughness ratio. The proposed approach is capable of accurately reflects the influence of roughness on the hydrodynamic pressure, and developed a deterministic model to investigate the hydrodynamic lubrication of textured surfaces.展开更多
The use of textured surfaces in lubrication to improve the tribological characteristics has been widely studied. The understanding of the textured surface geometric parameters influences on these tribological characte...The use of textured surfaces in lubrication to improve the tribological characteristics has been widely studied. The understanding of the textured surface geometric parameters influences on these tribological characteristics could help to improve their applications in industry. In this paper, we purpose to analyze the influence of the micro-texture depth on the friction coefficient experimentally. The experiment is conducted using different copper alloy samples have been the first laser textured with different micro-hole depth (40.83 μm and 46.36 μm). A 3D electronic Olympus microscope is used to visualize the shapes of the holes and find the depths. Then, the friction test has been conducted using these samples with the same velocity. The time variation of the friction coefficient is plotted and analyzed. The analysis of time variation of the friction coefficient shows a reduction of friction coefficient with the increase of the micro-hole depth has been observed. In some cases, this reduction is significant.展开更多
Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of ...Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of the American Iron and Steel Institute(AISI)52100 chromium steel,in this work,the effect of laser surface texturing(LST)was analyzed.With the different patterns of circle and ellipse comparing with the untextured samples,the wear behavior was investigated using the pin-on-disc tribometer.The lubricant used for wear analysis is semisolid lithium grease National Lubricating Grease Institute lubricant(SKF NLGI-3).Sliding wear analysis was conducted at different loads of 10 N,30 N and 50 N for the sliding speed of 750 r/min and 1400 r/min.The wear morphology was analyzed using a scanning electron microscope(SEM).The roughness of the samples was found using a white light interferometer.The effect of different patterns like circle and ellipse,alter the friction and wear properties of chromium alloy was observed compared with the untextured samples.LST shows considerable reduction in friction and wear for ellipsoidal pattern compared with the circular pattern because of wear debris and lubricant getting trapped.展开更多
It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development ...It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development of surface engineering techniques. However,the mechanisms through which textured patterns and texturing methods prove beneficial remains unclear. To address this issue,the tribological system of the cylinder liner?piston ring(CLPR) is investigated in this work. Two types of surface textures(Micro concave,Micro V?groove) are processed on the cylinder specimen using di erent processing methods. Comparative study on the friction coe cients,worn surface texture features and oil film characteristics are performed. The results demonstrate that the processing method of surface texture a ect the performance of the CLPR pairs under the specific testing conditions. In addition the micro V?groove processed by CNCPM is more favorable for improving the wear performances at the low load,while the micro?con?cave processed by CE is more favorable for improving the wear performances at the high load. These findings are in helping to understand the e ect of surface texture on wear performance of CLPR.展开更多
The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimpl...The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.展开更多
When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is t...When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is that there is the difference between the dynamic and the static friction coefficients. Textures with different area ratios are fabricated on the surfaces of the upper PTFE-based composite and the friction tests are carried out on a reciprocating tribotester under the boundary lubrication and flat-on-flat contact conditions. The results show that there exists an optimal textured area ratio of 19.6% that can minimize the difference between the dynamic and the static friction coefficients.展开更多
manufacturing(AM)technologies have been recognized for their capability to build complex components and hence have ofered more freedom to designers for a long time.The ability to directly use a computer-aided design(C...manufacturing(AM)technologies have been recognized for their capability to build complex components and hence have ofered more freedom to designers for a long time.The ability to directly use a computer-aided design(CAD)model has allowed for fabricating and realizing complicated components,monolithic design,reducing the number of components in an assembly,decreasing time to market,and adding performance or comfort-enhancing functionalities.One of the features that can be introduced for boosting a component functionality using AM is the inclusion of surface texture on a given component.This inclusion is usually a difcult task as creating a CAD model resolving fne details of a given texture is difcult even using commercial software packages.This paper develops a methodology to include texture directly on the CAD model of a target surface using a patch-based sampling texture synthesis algorithm,which can be manufactured using AM.Input for the texture generation algorithm can be either a physical sample or an image with heightmap information.The heightmap information from a physical sample can be obtained by 3D scanning the sample and using the information from the acquired point cloud.After obtaining the required inputs,the patches are sampled for texture generation according to non-parametric estimation of the local conditional Markov random feld(MRF)density function,which helps avoid mismatched features across the patch boundaries.While generating the texture,a design constraint to ensure AM producibility is considered,which is essential when manufacturing a component using,e.g.,Fused Deposition Melting(FDM)or Laser Powder Bed Fusion(LPBF).The generated texture is then mapped onto the surface using the developed distance and angle preserving mapping algorithms.The implemented algorithms can be used to map the generated texture onto a mathematically defned surface.This paper maps the textures onto fat,curved,and sinusoidal surfaces for illustration.After the texture mapping,a stereolithography(STL)model is generated with the desired texture on the target surface.The generated STL model is printed using FDM technology as a fnal step.展开更多
This article presents, on the one hand, the performance of ARC by configurations ITO/Si, MgO/Si, and GeO2/Si. On the other hand, we study the impact of thickness on the reflection of OCTs, because the thickness of OCT...This article presents, on the one hand, the performance of ARC by configurations ITO/Si, MgO/Si, and GeO2/Si. On the other hand, we study the impact of thickness on the reflection of OCTs, because the thickness of OCTs plays an important role on the optical properties and the variation of the reflection and transmission of TCO/Si heterojunctions as a function of thickness is also sown. And the last part of the paper, we will make a comparative study between the performance of silicon textured on the front side and that of silicon where the front side is planar. These two forms of silicon will be covered with ARC. For this, we will use the following materials ITO, MgO, and GeO2 and we represent the variation of the reflection of CAR on a planar surface and on a textured surface as a function of the wavelength. The results show that the reflection is low in textured surface compare to the planar surface.展开更多
To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),e...To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),epoxy asphalt(EA)and high viscosity high elasticity asphalt(HV)as interlayer bonding materials.In addition,a diagonal shear test was conducted using a self-designed diagonal shear jig.The effects of adhesive layer materials type,surface texture type,and different loading rates on the interlaminar bonding performance of UHPC/SMA combination specimens were investigated.The experimental study showed that the peak shear strength and shear modulus of the combined specimen decreased gradually with the decrease of thermosetting of the adhesive layer materials.The peak shear fracture energy of E was greater than that of HV and EA.The synergistic effect of the contact force generated by the roughing of the UHPC surface,the friction force,and the bonding force provided by the adhesive layer material can significantly improve the interlaminar shear performance of the assemblies.The power-law function of shear strength and shear modulus was proposed.The power-law model of peak shear strength and loading rate was verified.The shear strength and predicted shear strength satisfy the positive proportional functions with scale factors of 0.985,1.015,0.961,and 1.028,respectively.展开更多
Direct Laser Interference Patterning(DLIP)is used to texture current collector foils in a roll-to-roll process using a high-power picosecond pulsed laser system operating at either fundamental wavelength of 1064 nm or...Direct Laser Interference Patterning(DLIP)is used to texture current collector foils in a roll-to-roll process using a high-power picosecond pulsed laser system operating at either fundamental wavelength of 1064 nm or 2nd harmonic of 532 nm.The raw beam having a diameter of 3 mm@1/e^(2) is shaped into an elongated top-hat intensity profile using a diffractive so-called FBS■-L element and cylindrical telescopes.The shaped beam is split into its diffraction orders,where the two first orders are parallelized and guided into a galvanometer scanner.The deflected beams inside the scan head are recombined with an F-theta objective on the working position generating the interference pattern.The DLIP spot has a line-like interference pattern with about 15μm spatial period.Laser fluences of up to 8 J cm^(-2) were achieved using a maximum pulse energy of 0.6 mJ.Furthermore,an in-house built roll-to-roll machine was developed.Using this setup,aluminum and copper foil of 20μm and 9μm thickness,respectively,could be processed.Subsequently to current collector structuring coating of composite electrode material took place.In case of lithium nickel manganese cobalt oxide(NMC 622)cathode deposited onto textured aluminum current collector,an increased specific discharge capacity could be achieved at a C-rate of 1℃.For the silicon/graphite anode material deposited onto textured copper current collector,an improved rate capability at all C-rates between C/10 and 5℃ was achieved.The rate capability was increased up to 100%compared to reference material.At C-rates between C/2 and 2℃,the specific discharge capacity was increased to 200 mAh g^(-1),while the reference electrodes with untextured current collector foils provided a specific discharge capacity of 100 m Ah g^(-1),showing the potential of the DLIP technology for cost-effective production of battery cells with increased cycle lifetime.展开更多
Concrete pavement is accompanied by two major functional properties,namely noise emission and friction,which are closely related to pavement surface texture.While several technologies have been developed to mitigate t...Concrete pavement is accompanied by two major functional properties,namely noise emission and friction,which are closely related to pavement surface texture.While several technologies have been developed to mitigate tirepavement noise and improve driving friction by surface texturization,limited information is available to compare the advantages and disadvantages of different surface textures.In this study,a state-of-the-art and state-of-thepractice review is conducted to investigate the noise reduction and friction improvement technologies for concrete pavement surfaces.The commonly used tests for characterizing the surface texture,skid resistance,and noise emission of concrete pavement were first summarized.Then,the texturing methods for both fresh and hardened concrete pavement surfaces were discussed,and the friction,noise emission and durability performances of various surface textures were compared.It is found that the next generation concrete surface(NGCS)texture generally provides the best noise emission performance and excellent friction properties.The exposed aggregate concrete(EAC)and optimized diamond grinding textures are also promising alternatives.Lastly,the technical parameters for the application of both diamond grinding and diamond grinding&grooving textures were recommended based on the authors'research and practical experience in Germany and the US.This study offers a convenient reference to the pavement researchers and engineers who seek to quickly understand relevant knowledge and choose the most appropriate surface textures for concrete pavements.展开更多
After remanufacturing disassembly,several kinds of friction damages can be found on the mating surface of interference fit.These damages should be repaired and the cost is closely related to the severity of damages.In...After remanufacturing disassembly,several kinds of friction damages can be found on the mating surface of interference fit.These damages should be repaired and the cost is closely related to the severity of damages.Inspired by the excellent performance of surface texture in wear reduction,5 shapes of pit array textures are added to the specimens’surface to study their reduction effect of disassembly damage for interference fit.The results of disassembly experiments show that the order of influence of texture parameters on disassembly damage is as follows:equivalent circle diameter of single texture,texture shape and texture surface density.The influence of equivalent circle diameter of single texture and texture shape are obviously more significant than that of texture surface density.The circular texture with a surface density of 30%and a diameter of 100μm shows an excellent disassembly damage reduction effect because of its perfect ability of abrasive particle collection.And the probability of disassembly damage formation and evolution is also relatively small on this kind of textured surface.Besides,the load-carrying capacity of interference fit with the excellent texture is confirmed by load-carrying capacity experiments.The results show that the load-carrying capacity of the excellent texture surface is increased about 40%compared with that of without texture.This research provides a potential approach to reduce disassembly damage for interference fit.展开更多
Gear power-honing is mainly applied to finish small and medium-sized automotive gears,especially in new energy vehicles.The distinctive curved surface texture greatly improves the noise emission and service life of ho...Gear power-honing is mainly applied to finish small and medium-sized automotive gears,especially in new energy vehicles.The distinctive curved surface texture greatly improves the noise emission and service life of honed gears.The surface texture for honed gear considering the motion path and geometrical shape of abrasive particles has not been investigated.In this paper,the kinematics of the gear honing process is analyzed,and the machining marks produced by the abrasive particles of honing wheel scratching abrasive particles against the workpiece gear are calculated.The tooth surface roughness is modeled considering abrasive particle shapes and material plastic pile-ups.This results in a mathematical model that characterizes the structure of the tooth surface and the orientation of the machining marks.Experiments were used to verify the model,with a maximum relative error of less than 10%when abrasive particles are spherical.Based on this model,the effects of process parameters on the speeds of discrete points on the tooth flank,orientations of machining marks and roughness are discussed.The results show that the shaft angle between the workpiece gear and the honing wheel and the speed of the honing wheel is the main process parameters affecting the surface texture.This research proposes a surface texture model for honed gear,which can provide a theoretical basis for optimizing process parameters for gear power-honing.展开更多
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm...The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.展开更多
The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ce...The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ceramic-like oxide coating on the surface of Mg-based alloys,enhancing their resistance to corrosion. Research has demonstrated that PEO treatment can substantially improve the corrosion performance of alloys based on magnesium in the short term. In an effort to enhance the corrosion resistance of PEO coatings over an extended period of time, researchers have turned their attention to the use of laser processes as both pre-and post-treatments in conjunction with the PEO process. Various laser processes, such as laser shock melting(LSM), laser shock adhesion(LSA), laser shock texturing(LST), and laser shock peening(LSP), have been investigated for their potential to improve PEO coatings on Mg substrates and their alloys. These laser melting processes can homogenize and alter the microstructure of Mg-based alloys while leaving the bulk material unchanged, thereby modifying the substrate surface. However, the porous and rough structure of PEO coatings, with their open and interconnected pore structure, can reduce their long-term corrosion resistance. As such, various laser processes are well-suited for surface modification of these coatings. This study will first examine the PEO process and the various types of laser processes used in this process, before investigating the corrosion behavior of PEO coatings in conjunction with laser pre-and post-treatment processes.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.51205313,50975232)111 Project(Grant No.B13044)Northwestern Polytechnical University Foundation for Fundamental Research,China(Grant No.JC20110249)
文摘Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205313,50975232)Fundamental Research Funds for the Central Universities of China(Grant No.3102014JCS05009)the 111 Project of China(Grant No.B13044)
文摘Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675429,51205313)Fundamental Research Funds for the Central Universities,China(Grant No.3102014JCS05009)the 111 Project,China(Grant No.B13044)
文摘Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surfaces are still lack of study. By using multiscale method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. The influence of indentation depth, texture shape, texture spacing, and tip radius on the average friction forces and the running-in stages is studied. The results show that the lowest indentation depth can make all the four textured surfaces reach steady state. Surfaces with right-angled trapezoid textures on the right side are better for reducing the running-in stage, and surfaces with right-angled trapezoid textures on the left side are better to reduce wear. Compared with other textured surfaces, the total average friction forces can be reduced by 82.94%–91.49% for the case of the contact between the tip with radius R = 60rand the isosceles trapezoid textured surface. Besides,the total average friction forces increase with the tip radii due to that bigger tip will induce higher contact areas. This research proposes a detailed study on nanoscale reciprocating sliding contacts of textured surfaces, to contribute to design textured surfaces, reduce friction and wear.
基金The authors gratefully acknowledge supports of the National Natural Science Foundation of China(Grant No.52105452)High Level Personnel Project of Jiangsu Province(Grant No.JSSCBS20210188)+3 种基金Central University Basic Research Fund of China(Grant No.NT2022017)Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology(Grant No.56XAC22006)Nanjing Foundation for Returnees(Grant No.1005-YQR21043)Foundation of Jiangsu Science and Technology Association Young Talents(Grant No.JSTJ-2022-073).
文摘Textured surfaces have been widely applied in many fields due to their excellent functional performances.Although several micro-scale surface texturing techniques have been used to fabricate surface textures,most are either very expensive,have material limitations,or lack flexibility.In this study,a novel textured surface generation method using vibration-assisted ball-end milling with a non-resonant vibrator is proposed.Firstly,the configuration of the vibration-assisted ball-end milling system is introduced.Then,the trajectories of the cutting edges are modeled and analyzed.Furthermore,an analysis of a non-resonant vibrator is conducted.Finally,surface texture machining experiments are conducted,and the feasibility of the proposed vibration-assisted ball-end milling method for surface texture fabrication is verified.
基金supported by the National Basic Research Program of China(Grant No.2009CB724304)the National Key Technology R&D Program(Grant No.2011BAF09B05)+1 种基金the National Natural Science Foundation of China(Grant No.50975157)the Key Research Program of the State Key Laboratory of Tribology of Tsinghua University(Grant No.SKLT08A06)
文摘A mass-conservative average flow model based on the finite element method(FEM) is introduced to predict the performances of textured surfaces applied in mechanical seals or thrust bearings.In this model,the Jakobsson-Floberg-Olsson(JFO) boundary conditions are applied to the average flow model for ensuring the mass-conservative law.Moreover,the non-uniform triangular grid is utilized,which can deal with the problem of complex geometric shapes.By adopting the modeling techniques,the model proposed here is capable of dealing with complex textured surfaces.The algorithm is proved correct by the numerical experiment.In addition,the model is employed to gain further insight into the influences of the dimples with different shapes and orientations on smooth and rough surfaces on the load-carrying capacity.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305168,51375211,51375213)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20130524)Research Foundation for Advanced Talents of Jiangsu University,China(Grant No.13JDG090)
文摘Surface texturing has been applied to improving the tribological performance of mechanical components for many years. Currently, the researches simulate the film pressure distribution of textured rough surfaces on the basis of the average flow model, and however the influence of roughness on the film pressure distribution could not be precisely expressed. Therefore, in order to study the hydrodynamic lubrication of the rough textured surfaces, sinusoidal waves are employed to characterize untextured surfaces. A deterministic model for hydrodynamic lubrication of microdimple textured rough surfaces is developed to predict the distribution of hydrodynamic pressure. By supplementing with the JFO cavitation boundary, the load carrying capacity of the film produced by micro-dimples and roughness is obtained. And the geometric parameters of textured rough surface are optimized to obtain the maximum hydrodynamic lubrication by specifying an optimization goal of the load carrying capacity. The effect of roughness on the hydrodynamic pressure of surface texture is significant and the load carrying capacity decreases with the increase of the roughness ratio because the roughness greatly suppresses the hydrodynamic effect of dimples. It shows that the roughness ratio of surface may be as small as possible to suppress the effect of hydrodynamic lubrication. Additionally,there are the optimum values of the micro-dimple depth and area density to maximize the load carrying capacity for any given value of the roughness ratio. The proposed approach is capable of accurately reflects the influence of roughness on the hydrodynamic pressure, and developed a deterministic model to investigate the hydrodynamic lubrication of textured surfaces.
文摘The use of textured surfaces in lubrication to improve the tribological characteristics has been widely studied. The understanding of the textured surface geometric parameters influences on these tribological characteristics could help to improve their applications in industry. In this paper, we purpose to analyze the influence of the micro-texture depth on the friction coefficient experimentally. The experiment is conducted using different copper alloy samples have been the first laser textured with different micro-hole depth (40.83 μm and 46.36 μm). A 3D electronic Olympus microscope is used to visualize the shapes of the holes and find the depths. Then, the friction test has been conducted using these samples with the same velocity. The time variation of the friction coefficient is plotted and analyzed. The analysis of time variation of the friction coefficient shows a reduction of friction coefficient with the increase of the micro-hole depth has been observed. In some cases, this reduction is significant.
文摘Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of the American Iron and Steel Institute(AISI)52100 chromium steel,in this work,the effect of laser surface texturing(LST)was analyzed.With the different patterns of circle and ellipse comparing with the untextured samples,the wear behavior was investigated using the pin-on-disc tribometer.The lubricant used for wear analysis is semisolid lithium grease National Lubricating Grease Institute lubricant(SKF NLGI-3).Sliding wear analysis was conducted at different loads of 10 N,30 N and 50 N for the sliding speed of 750 r/min and 1400 r/min.The wear morphology was analyzed using a scanning electron microscope(SEM).The roughness of the samples was found using a white light interferometer.The effect of different patterns like circle and ellipse,alter the friction and wear properties of chromium alloy was observed compared with the untextured samples.LST shows considerable reduction in friction and wear for ellipsoidal pattern compared with the circular pattern because of wear debris and lubricant getting trapped.
基金Supported by National Natural Science Foundation of China(Grant No.51422507)Hubei Provincial Natural Science Foundation of China(Grant No.2015CFB372)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.2015IVA010)Tribology Science Fund of State Key Laboratory of Tribology of China(Grant No.SKLTKF14B03)
文摘It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development of surface engineering techniques. However,the mechanisms through which textured patterns and texturing methods prove beneficial remains unclear. To address this issue,the tribological system of the cylinder liner?piston ring(CLPR) is investigated in this work. Two types of surface textures(Micro concave,Micro V?groove) are processed on the cylinder specimen using di erent processing methods. Comparative study on the friction coe cients,worn surface texture features and oil film characteristics are performed. The results demonstrate that the processing method of surface texture a ect the performance of the CLPR pairs under the specific testing conditions. In addition the micro V?groove processed by CNCPM is more favorable for improving the wear performances at the low load,while the micro?con?cave processed by CE is more favorable for improving the wear performances at the high load. These findings are in helping to understand the e ect of surface texture on wear performance of CLPR.
基金Project(2007046) supported by High Technology Research Project of Jiangsu Province,China
文摘The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.
基金financially supported by the National Natural Science Foundation of China (No. 51675268)
文摘When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is that there is the difference between the dynamic and the static friction coefficients. Textures with different area ratios are fabricated on the surfaces of the upper PTFE-based composite and the friction tests are carried out on a reciprocating tribotester under the boundary lubrication and flat-on-flat contact conditions. The results show that there exists an optimal textured area ratio of 19.6% that can minimize the difference between the dynamic and the static friction coefficients.
基金Supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-EXC 2023 Internet of Production/390621612。
文摘manufacturing(AM)technologies have been recognized for their capability to build complex components and hence have ofered more freedom to designers for a long time.The ability to directly use a computer-aided design(CAD)model has allowed for fabricating and realizing complicated components,monolithic design,reducing the number of components in an assembly,decreasing time to market,and adding performance or comfort-enhancing functionalities.One of the features that can be introduced for boosting a component functionality using AM is the inclusion of surface texture on a given component.This inclusion is usually a difcult task as creating a CAD model resolving fne details of a given texture is difcult even using commercial software packages.This paper develops a methodology to include texture directly on the CAD model of a target surface using a patch-based sampling texture synthesis algorithm,which can be manufactured using AM.Input for the texture generation algorithm can be either a physical sample or an image with heightmap information.The heightmap information from a physical sample can be obtained by 3D scanning the sample and using the information from the acquired point cloud.After obtaining the required inputs,the patches are sampled for texture generation according to non-parametric estimation of the local conditional Markov random feld(MRF)density function,which helps avoid mismatched features across the patch boundaries.While generating the texture,a design constraint to ensure AM producibility is considered,which is essential when manufacturing a component using,e.g.,Fused Deposition Melting(FDM)or Laser Powder Bed Fusion(LPBF).The generated texture is then mapped onto the surface using the developed distance and angle preserving mapping algorithms.The implemented algorithms can be used to map the generated texture onto a mathematically defned surface.This paper maps the textures onto fat,curved,and sinusoidal surfaces for illustration.After the texture mapping,a stereolithography(STL)model is generated with the desired texture on the target surface.The generated STL model is printed using FDM technology as a fnal step.
文摘This article presents, on the one hand, the performance of ARC by configurations ITO/Si, MgO/Si, and GeO2/Si. On the other hand, we study the impact of thickness on the reflection of OCTs, because the thickness of OCTs plays an important role on the optical properties and the variation of the reflection and transmission of TCO/Si heterojunctions as a function of thickness is also sown. And the last part of the paper, we will make a comparative study between the performance of silicon textured on the front side and that of silicon where the front side is planar. These two forms of silicon will be covered with ARC. For this, we will use the following materials ITO, MgO, and GeO2 and we represent the variation of the reflection of CAR on a planar surface and on a textured surface as a function of the wavelength. The results show that the reflection is low in textured surface compare to the planar surface.
基金Funded by National Natural Science Foundation of China(Nos.U21A20149 and 51878003)。
文摘To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),epoxy asphalt(EA)and high viscosity high elasticity asphalt(HV)as interlayer bonding materials.In addition,a diagonal shear test was conducted using a self-designed diagonal shear jig.The effects of adhesive layer materials type,surface texture type,and different loading rates on the interlaminar bonding performance of UHPC/SMA combination specimens were investigated.The experimental study showed that the peak shear strength and shear modulus of the combined specimen decreased gradually with the decrease of thermosetting of the adhesive layer materials.The peak shear fracture energy of E was greater than that of HV and EA.The synergistic effect of the contact force generated by the roughing of the UHPC surface,the friction force,and the bonding force provided by the adhesive layer material can significantly improve the interlaminar shear performance of the assemblies.The power-law function of shear strength and shear modulus was proposed.The power-law model of peak shear strength and loading rate was verified.The shear strength and predicted shear strength satisfy the positive proportional functions with scale factors of 0.985,1.015,0.961,and 1.028,respectively.
基金funded by the German Federal Ministry of Education and Research(BMBF),project NextGen-3DBat,Grant Number 03XP0198Fby the Fraunhofer Cluster of Excellence Advanced Photon Sources(CAPS)。
文摘Direct Laser Interference Patterning(DLIP)is used to texture current collector foils in a roll-to-roll process using a high-power picosecond pulsed laser system operating at either fundamental wavelength of 1064 nm or 2nd harmonic of 532 nm.The raw beam having a diameter of 3 mm@1/e^(2) is shaped into an elongated top-hat intensity profile using a diffractive so-called FBS■-L element and cylindrical telescopes.The shaped beam is split into its diffraction orders,where the two first orders are parallelized and guided into a galvanometer scanner.The deflected beams inside the scan head are recombined with an F-theta objective on the working position generating the interference pattern.The DLIP spot has a line-like interference pattern with about 15μm spatial period.Laser fluences of up to 8 J cm^(-2) were achieved using a maximum pulse energy of 0.6 mJ.Furthermore,an in-house built roll-to-roll machine was developed.Using this setup,aluminum and copper foil of 20μm and 9μm thickness,respectively,could be processed.Subsequently to current collector structuring coating of composite electrode material took place.In case of lithium nickel manganese cobalt oxide(NMC 622)cathode deposited onto textured aluminum current collector,an increased specific discharge capacity could be achieved at a C-rate of 1℃.For the silicon/graphite anode material deposited onto textured copper current collector,an improved rate capability at all C-rates between C/10 and 5℃ was achieved.The rate capability was increased up to 100%compared to reference material.At C-rates between C/2 and 2℃,the specific discharge capacity was increased to 200 mAh g^(-1),while the reference electrodes with untextured current collector foils provided a specific discharge capacity of 100 m Ah g^(-1),showing the potential of the DLIP technology for cost-effective production of battery cells with increased cycle lifetime.
基金The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China(2019YFE0116300)the National Natural Science Foundation of China(52308448,52250610218)the Natural Science Foundation of Heilongjiang Province of China(JJ2020ZD0015).
文摘Concrete pavement is accompanied by two major functional properties,namely noise emission and friction,which are closely related to pavement surface texture.While several technologies have been developed to mitigate tirepavement noise and improve driving friction by surface texturization,limited information is available to compare the advantages and disadvantages of different surface textures.In this study,a state-of-the-art and state-of-thepractice review is conducted to investigate the noise reduction and friction improvement technologies for concrete pavement surfaces.The commonly used tests for characterizing the surface texture,skid resistance,and noise emission of concrete pavement were first summarized.Then,the texturing methods for both fresh and hardened concrete pavement surfaces were discussed,and the friction,noise emission and durability performances of various surface textures were compared.It is found that the next generation concrete surface(NGCS)texture generally provides the best noise emission performance and excellent friction properties.The exposed aggregate concrete(EAC)and optimized diamond grinding textures are also promising alternatives.Lastly,the technical parameters for the application of both diamond grinding and diamond grinding&grooving textures were recommended based on the authors'research and practical experience in Germany and the US.This study offers a convenient reference to the pavement researchers and engineers who seek to quickly understand relevant knowledge and choose the most appropriate surface textures for concrete pavements.
基金Supported by National Natural Science Foundation of China (Grant No.51405121)。
文摘After remanufacturing disassembly,several kinds of friction damages can be found on the mating surface of interference fit.These damages should be repaired and the cost is closely related to the severity of damages.Inspired by the excellent performance of surface texture in wear reduction,5 shapes of pit array textures are added to the specimens’surface to study their reduction effect of disassembly damage for interference fit.The results of disassembly experiments show that the order of influence of texture parameters on disassembly damage is as follows:equivalent circle diameter of single texture,texture shape and texture surface density.The influence of equivalent circle diameter of single texture and texture shape are obviously more significant than that of texture surface density.The circular texture with a surface density of 30%and a diameter of 100μm shows an excellent disassembly damage reduction effect because of its perfect ability of abrasive particle collection.And the probability of disassembly damage formation and evolution is also relatively small on this kind of textured surface.Besides,the load-carrying capacity of interference fit with the excellent texture is confirmed by load-carrying capacity experiments.The results show that the load-carrying capacity of the excellent texture surface is increased about 40%compared with that of without texture.This research provides a potential approach to reduce disassembly damage for interference fit.
基金Supported by National Key Research and Development Plan(Grant No.2020YFE0201000)Chongqing Municipal Special Postdoctoral Science Foundation(Grant No.XmT20200021)Liuzhou Municipal Science and Technology project(Grant No.2021AAB0101).
文摘Gear power-honing is mainly applied to finish small and medium-sized automotive gears,especially in new energy vehicles.The distinctive curved surface texture greatly improves the noise emission and service life of honed gears.The surface texture for honed gear considering the motion path and geometrical shape of abrasive particles has not been investigated.In this paper,the kinematics of the gear honing process is analyzed,and the machining marks produced by the abrasive particles of honing wheel scratching abrasive particles against the workpiece gear are calculated.The tooth surface roughness is modeled considering abrasive particle shapes and material plastic pile-ups.This results in a mathematical model that characterizes the structure of the tooth surface and the orientation of the machining marks.Experiments were used to verify the model,with a maximum relative error of less than 10%when abrasive particles are spherical.Based on this model,the effects of process parameters on the speeds of discrete points on the tooth flank,orientations of machining marks and roughness are discussed.The results show that the shaft angle between the workpiece gear and the honing wheel and the speed of the honing wheel is the main process parameters affecting the surface texture.This research proposes a surface texture model for honed gear,which can provide a theoretical basis for optimizing process parameters for gear power-honing.
基金supported by the Special Actions for Developing High-performance Manufacturing of Ministry of Industry and Information Technology(Grant No.:TC200H02J)the Research Grants Council of the Hong Kong Special Ad-ministrative Region,China(Project No.:PolyU 152125/18E)+1 种基金the National Natural Science Foundation of China(Project No.:U19A20104)the Research Committee of The Hong Kong Polytechnic University(Project Code G-RK2V).
文摘The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.
文摘The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ceramic-like oxide coating on the surface of Mg-based alloys,enhancing their resistance to corrosion. Research has demonstrated that PEO treatment can substantially improve the corrosion performance of alloys based on magnesium in the short term. In an effort to enhance the corrosion resistance of PEO coatings over an extended period of time, researchers have turned their attention to the use of laser processes as both pre-and post-treatments in conjunction with the PEO process. Various laser processes, such as laser shock melting(LSM), laser shock adhesion(LSA), laser shock texturing(LST), and laser shock peening(LSP), have been investigated for their potential to improve PEO coatings on Mg substrates and their alloys. These laser melting processes can homogenize and alter the microstructure of Mg-based alloys while leaving the bulk material unchanged, thereby modifying the substrate surface. However, the porous and rough structure of PEO coatings, with their open and interconnected pore structure, can reduce their long-term corrosion resistance. As such, various laser processes are well-suited for surface modification of these coatings. This study will first examine the PEO process and the various types of laser processes used in this process, before investigating the corrosion behavior of PEO coatings in conjunction with laser pre-and post-treatment processes.