期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
Effects of thawing-induced softening on fracture behaviors of frozen rock
1
作者 Ting Wang Hailiang Jia +2 位作者 Qiang Sun Xianjun Tan Liyun Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期979-989,共11页
Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ... Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks. 展开更多
关键词 Frozen sandstone Different thawing temperature Fracture toughness Microcrack propagation process Unfrozen water content
下载PDF
Response of Freezing/Thawing Indexes to the Wetting Trend under Warming Climate Conditions over the Qinghai–Tibetan Plateau during 1961–2010:A Numerical Simulation 被引量:2
2
作者 Xuewei FANG Zhi LI +5 位作者 Chen CHENG Klaus FRAEDRICH Anqi WANG Yihui CHEN Yige XU Shihua LYU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第2期211-222,共12页
Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming ... Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation. 展开更多
关键词 freezing/thawing indexes numerical modeling wetting process frozen ground Qinghai–Tibetan Plateau
下载PDF
Coupling of the Calculated Freezing and Thawing Front Parameterization in the Earth System Model CAS-ESM 被引量:2
3
作者 Ruichao LI Jinbo XIE +5 位作者 Zhenghui XIE Binghao JIA Junqiang GAO Peihua QIN Longhuan WANG Si CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1671-1688,共18页
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro... The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process. 展开更多
关键词 frozen ground freezing and thawing fronts maximum freezing depth active layer thickness earth system model CAS-ESM
下载PDF
Study on temperature field and settlement of thawing soil under static and dynamic loading
4
作者 LiYun Peng JianKun Liu 《Research in Cold and Arid Regions》 CSCD 2013年第5期659-666,共8页
A series of tests were conducted to analyze temperature field distribution and thawing settlement of a thawing soil under static and dynamic loading at various cooling and thawing temperatures. The results demonstrate... A series of tests were conducted to analyze temperature field distribution and thawing settlement of a thawing soil under static and dynamic loading at various cooling and thawing temperatures. The results demonstrate: (1) the temperature field distribution of the thawing soil was not significantly influenced by the loading form under the tested loading conditions; similar results were obtained for samples at different dynamic loading frequencies and different dynamic loading ampli- tudes, which verified the independence of loading form and temperature field; (2) changed temperature field distributions were found in thawing soil with different cooling and thawing temperatures, and the cooling and thawing temperature of the samples were the main factors affecting their temperature distributions; (3) under the tested conditions, thawing set- tlements were little influenced by the thawing temperature and the dynamic loading frequency; and (4) a linear relation- ship existed between the thawing settlement and the cooling temperature, and a logarithmic function could be used to describe the relationship between the thawing settlement and the loading amplitude. 展开更多
关键词 temperature field thawing settlement thawing soil dynamic loading cooling temperature thawing temperature
下载PDF
Effect of Different Thawing Methods on Post-thaw Motility of Cow Semen in Cryopreservation Straws 被引量:1
5
作者 Qiao Limin Guo Tong +5 位作者 Qiao Fuqiang Yao Hua Xiao Xishan Hou Yinxu Fu Jingtao Ren Kang 《Animal Husbandry and Feed Science》 CAS 2014年第4期185-187,208,共4页
The study was to investigate the effects of different thawing temperatures(5,15,40,75,90 ℃) and times(1- 120 s) on properties of post-thaw cow semen by detecting frozen-thawed semen motility,acrosome integrity and ta... The study was to investigate the effects of different thawing temperatures(5,15,40,75,90 ℃) and times(1- 120 s) on properties of post-thaw cow semen by detecting frozen-thawed semen motility,acrosome integrity and tail membrane integrity,further obtaining the optimal thawing method of straw frozen semen from dairy cow. The results showed that(1) Thawing of the straw frozen semen of dairy cow at 75 ℃ for 3 s yielded the highest semen motility,followed by 40 ℃for 20 s,and the least by low temperature 5 ℃ and room temperature 15 ℃ with a semen motility of 0. 3,moreover thawing at high temperature 90 ℃ was not suitable for large scale production due to the difficult control of the temperature;(2) The acrosome intact rate and plasma membrane integrity rate of semens thawed at90 ℃ were remarkably lower than that at 40 ℃ and 75 ℃ significantly(P 【 0. 05),while its semen malformation rate was significantly higher than that at 40 ℃and 75 ℃(P 【 0. 05);(3) The Survival time of semens at 37 ℃ varied largely among different thawing temperature,in detail by 40 ℃ 】 75 ℃ 】 90 ℃. In practice,the thawing method of straw frozen semen of dairy cow should be selected according to the specific circumstance and inseminated immediately,with the recommended condition of thawing at 75 ℃ for 3 s. If the thawed semen could not be inseminated immediately,the thawing should be performed at 20 s for 40 ℃to maintain the motility for a longer term. 展开更多
关键词 Cow semen thawing temperature thawing time Semen quality
下载PDF
Effects of Storage Temperature on the Effective Activity of Straw Frozen Semen after Thawing
6
作者 Qiao Limin Ma Jianmin +5 位作者 Qiao Fuqiang Yao Hua Xiao Xishan Hou Yinxu Fu Jingtao Ren Kang 《Animal Husbandry and Feed Science》 CAS 2015年第4期203-204,207,共3页
The aim was to discuss the optimal storage environment and proper insemination time after thawing of 0.25 mL straw frozen semen. Straw frozen semen was thawed at 40 ℃ for 20 s, and then stored at 0 -4 ℃, 14 - 16 ℃,... The aim was to discuss the optimal storage environment and proper insemination time after thawing of 0.25 mL straw frozen semen. Straw frozen semen was thawed at 40 ℃ for 20 s, and then stored at 0 -4 ℃, 14 - 16 ℃, 25 -27 ℃ for 2, 4, 6, 8 and 10 h, respectively. The sperm motility was detected. After thawing, semen was stored at 0 - 4 ℃ and 14 - 16 ℃ for 10 h. Their sperm motilities (0.434 ±0. 016 7 and 0.423 ±0.019 6) had no significant differences (P 〉 0.05) with initial thawing motility (0.441 ± 0.030). Sperm motility reduced as the storage time prolonged at 25 -27 ℃. Sperm motility after 6 h had signifi- cant differences with that of initial thawing motility (P 〈 O. 05 ), and sperm motilities after 8 and 10 h showed extremely significant differences (P 〈 0.01 ). Thus, sperm motility after thawing was still very high after stored at 0 -4 ℃ and 14 - 16 ℃ within 10 h, which met the requirements for insemination. Under this temperature and time ranges, sperm could be carried over long distances, which had small effects on sperm quality and reached the expected insemination effects. However, under the temperature of 25 - 27 ℃, semen should be used for insemination within 6 h after thawing. 展开更多
关键词 Straw frozen semen thawing temperature thawing time Storage temperature Sperm motility
下载PDF
Changes in freezing and thawing indices over the source region of the Yellow River from 1980 to 2014 被引量:6
7
作者 Rui Wang Qingke Zhu Hao Ma 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第1期257-268,共12页
Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawin... Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawing indices and their relationship with air indices is limited.Based on daily air and ground-surface temperatures collected from 11 meteorological stations in the source region of the Yellow River,the freezing and thawing indices were calculated,and their spatial distribution and trends were analyzed.The air-freezing index(AFI),air-thawing index(ATI),ground surface-freezing index(GFI),ground surface-thawing index(GTI),air thawing-freezing index ratio(Na)and surface ground thawing-freezing index ratio(Ng)were 1554.64,1153.93,1.55,2484.85,850.57℃-days and 3.44,respectively.Altitude affected the spatial distribution of the freezing and thawing indices.As the altitude increased,the freezing indices gradually increased,and the thawing indices and thawing-freezing index ratio decreased.From 1980 to 2014,the AFI and GFI decreased at rates of 8.61 and 11.06℃-days a^(-1),the ATI and GTI increased at 9.65 and 14.53℃-days a^(-1),and Na and Ng significantly increased at 0.21 and 0.79 decade^(-1).Changes in the freezing and thawing indices were associated with increases in the air and ground-surface temperatures.The rates of change of the ground surface freezing and thawing indices were faster than the air ones because the rate of increase of the groundsurface temperature was faster than that of the air and the difference between the ground surface and air increased.The change point of the time series of freezing and thawing indices occurred in 2000–2001.After 2000–2001,the AFI and GFI were lower than before the change point,and the changing trend was lower.The ATI,GTI,Na and Ng during 2001–2014 were higher,with faster rates than before.In addition,the annual thawing indices composed a greater proportion of the mean annual air temperature and mean annual ground surface temperature than the annual freezing indices.This study provides the necessary basis for research on and prediction of permafrost changes,especially changes in the depth of the active permafrost layer,climate change,and possible evolution of the ecological environment over the source region of the Yellow River on the Qinghai-Tibet Plateau. 展开更多
关键词 CLIMATE change FREEZING and thawing indices PERMAFROST The source region of the YELLOW RIVER
下载PDF
Mechanics Behavior of Ultra High Toughness Cementitious Composites after Freezing and Thawing 被引量:9
8
作者 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期509-514,共6页
Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bendin... Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions. 展开更多
关键词 ultra high toughness cementitious composites cyclic freezing and thawing flexural strength multiple cracking flexural toughness
下载PDF
Impact of the Anomalous Thawing in the Tibetan Plateau on Summer Precipitation in China and Its Mechanism 被引量:11
9
作者 高荣 韦志刚 +1 位作者 董文杰 钟海玲 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期238-245,共8页
The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorol... The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend. 展开更多
关键词 Tibetan Plateau thawing of frozen soil summer precipitation
下载PDF
The Impact of Soil Freezing/Thawing Processes on Water and Energy Balances 被引量:5
10
作者 张霞 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期169-177,共9页
A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liqui... A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods. 展开更多
关键词 frozen soil water and energy balances freezing/thawing processes surface flux
下载PDF
Effect on anaerobic digestion performance of corn stover by freezing–thawing with ammonia pretreatment 被引量:3
11
作者 Hairong Yuan Yanyan Lan +3 位作者 Jialin Zhu Akiber Chufo Wachemo Xiujin Li Liang Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期200-207,共8页
In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness o... In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application. 展开更多
关键词 Freezing–thawing AMMONIA PRETREATMENT Anaerobic DIGESTION Corn STOVER
下载PDF
Influences of Seasonal Freezing and Thawing on Soil Water-stable Aggregates in Orchard in High Cold Region,Northeast China 被引量:3
12
作者 LIANG Yunjiang DENG Xu +4 位作者 SONG Tao CHEN Guoshuang WANG Yuemei ZHANG Qing LU Xinrui 《Chinese Geographical Science》 SCIE CSCD 2021年第2期234-247,共14页
Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of ... Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards. 展开更多
关键词 water-stable aggregates orchard age apple-pear orchard soil seasonal freezing and thawing soil degradation high cold region
下载PDF
Study of polluted soil remediation based on freezing and thawing cycles 被引量:3
13
作者 DaHu Rui BaiYang Song +1 位作者 Yuzuru Ito Li Wang 《Research in Cold and Arid Regions》 CSCD 2014年第4期322-330,共9页
It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant e... It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively. 展开更多
关键词 soil pollution REMEDIATION washing technology freezing process thawing process moisture migration
下载PDF
Stress-Strain Relationship and Failure Criterion for Concrete after Freezing and Thawing Cycles 被引量:5
14
作者 罗昕 卫军 《Journal of Southwest Jiaotong University(English Edition)》 2006年第3期265-271,共7页
The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of intern... The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained. Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies tile rationality of tile damage-based one-dimensional stress-strain relationship proposed. 展开更多
关键词 CONCRETE DAMAGE Stress-strain relationship Strength theory Freezing and thawing cycles Supersonic velocity
下载PDF
Railroad bed bearing strength in the period of thawing and methods of its enhancement 被引量:3
15
作者 Andrey Petryaev Anastasia Morozova 《Research in Cold and Arid Regions》 CSCD 2013年第5期548-553,共6页
The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the propert... The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the properties of clay soils that form the railway are from hydration, fieeze-thaw cycles and vibrodynamic impact of Wains. The increase in soil moisture is due to infillration of water into the ground, as well as the rise in water level due to soil redistribution during winter freezes. This can dramatically alter the basic characteristics of the soil, such as shear resistance and bulk density, on which strength and stability of soil mass depend primarily. Therefore, the degree of railway bed stability is not constant, but varies with time. 展开更多
关键词 beating capacity thawing layer vibrodynamic load geosynthetic material
下载PDF
Comparison of the water change characteristics between the formation and dissociation of methane hydrate and the freezing and thawing of ice in sand 被引量:2
16
作者 Peng Zhang Qingbai Wu Yingmei Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期205-210,共6页
关键词 methane hydrate ICE formation and dissociation process freezing and thawing process water change
下载PDF
Alternate freezing and thawing enhanced the sediment and nutrient runoff loss in the restored soil of the alpine mining area 被引量:1
17
作者 LI Fa-Yong LUO Ren-jie +6 位作者 YOU Yong-jun HU Xue-fei QIAN Xiao-yan ZHANG Peng-yan WANG Shan LI Guo-yu KAMEL Mohamed Eltohamy 《Journal of Mountain Science》 SCIE CSCD 2022年第6期1823-1837,共15页
This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and... This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and nutrient losses, and potential influencing factors under freeze-thaw(FT) conditions. Three FT treatments(i.e., 0, 3, and 5 FT cycles), and two soil moisture contents(SMCs;i.e., 10% and 20% SMC on a gravimetric basis) were assessed. The runoff, sediment yield, ammonia nitrogen(AN), nitrate nitrogen(NN), total phosphorus(TP), and dissolved phosphorus(DP) losses from runoff were characterized under different rainfall durations. The fitting results indicated that the runoff rate and sediment rate, AN, NN, TP, and DP concentrations in runoff could be described by exponential functions. FT action increased the total runoff volume and sediment yield by 14.6%–26.0% and 8.8%–35.2%, respectively. The runoff rate and sediment rate increased rapidly with the increment of FT cycles before stabilizing. At 20% SMC, the total runoff volume and sediment yield were significantly higher than those at 10% SMC. The loss curves of AN and NN concentrations varied due to differences in their chemical properties. FT action and high SMC promoted AN and NN losses, whereas the FT cycles had little effect. FT action increased TP and DP losses by 60.2%–220.1% and 48.4%–129.8%, respectively, compared to cases with no FT action;the highest TP and DP losses were recorded at 20% SMC. This study provides a deep understanding of freezing-thawing mechanisms in the soils of alpine mine restoration areas and the influencing factors of these mechanisms on soil erosion, thereby supporting the development of erosion prevention and control measures in alpine mine restoration areas. 展开更多
关键词 Freezing and thawing Mine restoration area nitrogen loss Phosphorus loss Rainfall simulation Soil moisture content
下载PDF
How freezing and thawing processes affect black-soil aggregate stability in northeastern China 被引量:7
18
作者 FengWang XiaoZeng Han +1 位作者 LiangHao Li KeQiang Zhang 《Research in Cold and Arid Regions》 2010年第1期67-72,共6页
Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size ... Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size groups, different water contents, various freeze-thaw cycles, and various freezing temperatures. The results showed that, when at suitable water content, aggregate stability was enhanced, aggregate sta-bility will be disrupted when moisture content is too high or too low, especially higher water content. Temperature also had a significant ef-fect, but moisture content determined the suitable freezing temperatures for a given soil. Water-stable aggregate (WSA〉0.5), the total aggre-gate content, and mean weight diameter decreasing with the freeze-thaw cycles increase, reached to 5 percent significance level. The reason for crumbing aggregates is the water and air conflict, thus raising the hypothesis that water content affects the aggregate stability in the process of freezing and thawing. 展开更多
关键词 freezing and thawing processes black soil water-stable aggregates mean weight diameter
下载PDF
Strength characteristics and energy dissipation evolution of thawing silty clay during cyclic triaxial loading 被引量:1
19
作者 HongHuan Cui BoYuan Shao XiaoWen Han 《Research in Cold and Arid Regions》 CSCD 2021年第5期440-449,共10页
Cyclic triaxial tests are conducted to analyze the evolution of strength parameters and energy dissipation of thawing silty clay under different stress paths.The effects of freezing temperature,thawing temperature and... Cyclic triaxial tests are conducted to analyze the evolution of strength parameters and energy dissipation of thawing silty clay under different stress paths.The effects of freezing temperature,thawing temperature and confining pressures on the stress-strain and strength characteristics of soil samples are studied through monotonic loading and cyclic loading tests by using high-and low-temperature triaxial apparatus.The variation of the total work,elastic deformation energy,dissipated energy,energy dissipation rate,residual strain,and damage variable during loading and unloading are discussed.The experimental results show that the samples have higher strain tolerance under high confining pressure,low freezing temperature,and low thawing temperature,and the same other conditions.The soil sample state and failure pattern can be judged by using the energy parameters measured in the experiment. 展开更多
关键词 thawing soil stress-strain relationship triaxial cyclic loading and unloading energy dissipation
下载PDF
A model of unfrozen water content in rock during freezing and thawing with experimental validation by nuclear magnetic resonance
20
作者 Zhouzhou Su Xianjun Tan +2 位作者 Weizhong Chen Hailiang Jia Fei Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1545-1555,共11页
The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock durin... The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock during freezing and thawing process,considering the influence of unfrozen water film and rock pore structure,which can reflect the hysteresis and super-cooling effects.The pore size distribution cu rves of red sandsto ne and its unfrozen water conte nt under different temperatures during the freezing and thawing process were measured using nuclear magnetic resonance(NMR) to validate the proposed model.Comparison between the experimental and calculated results indicated that the theoretical model accu rately reflected the water content change law of red sandstone during the freezing and thawing process.Furthermore,the influences of Hamaker constant and surface relaxation parameter on the model results were examined.The results showed that the appropriate magnitude order of Hamaker constant for the red sandstone was 10J to 10J;and when the relaxation parameter of the rock surface was within 25-30 μm/ms,the calculated unfrozen water content using the proposed model was consistent with the experimental value. 展开更多
关键词 Freezing and thawing Unfrozen water content Super-cooling and hysteresis Nuclear magnetic resonance(NMR) Unfrozen water calculation model Red sandstone
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部