期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
《援鹑堂笔记》版本考 被引量:2
1
作者 王晓静 《西南交通大学学报(社会科学版)》 CSSCI 2013年第3期20-24,共5页
《援鹑堂笔记》是清代中期桐城学者姚范的一部学术笔记。姚范学识淹博,为时人所推服,但其生平不肯轻事著述,故今所传《援鹑堂》诸种,皆其后世子孙所纂辑,《援鹑堂笔记》即其遗笔之一。但因其成书历经姚氏几代人,加之著录者的无心之失,... 《援鹑堂笔记》是清代中期桐城学者姚范的一部学术笔记。姚范学识淹博,为时人所推服,但其生平不肯轻事著述,故今所传《援鹑堂》诸种,皆其后世子孙所纂辑,《援鹑堂笔记》即其遗笔之一。但因其成书历经姚氏几代人,加之著录者的无心之失,致使其版本问题莫衷一是。通过对其成书过程及诸家著录的考辨,可以最终考定《援鹑堂笔记》只有初刻二十八卷和重刻五十卷两种版本。 展开更多
关键词 清代笔记 姚范 《援鹑堂笔记》 姚莹 二十八卷初刻本 五十卷重刻本 李慈铭 方东树
下载PDF
面向多数据流的车厢拥挤回归分析方法
2
作者 奚蓓灏 汪明明 陈庆奎 《计算机应用》 CSCD 北大核心 2021年第S02期314-317,共4页
公交车拥挤度分析对维护公共交通安全起着重要的作用。针对在传统的目标检测方法中使用单个摄像头导致无法获取完整的车厢图片信息,以及在高密度场景下乘客与乘客之间的遮挡或者乘客被车厢内的座椅等物体遮挡的问题,提出了一种借助两个... 公交车拥挤度分析对维护公共交通安全起着重要的作用。针对在传统的目标检测方法中使用单个摄像头导致无法获取完整的车厢图片信息,以及在高密度场景下乘客与乘客之间的遮挡或者乘客被车厢内的座椅等物体遮挡的问题,提出了一种借助两个前后车厢的摄像头面向多数据流的车厢拥挤回归分析方法。首先,定义一个线性方程;其次,获取相对可见信息:公交车最大核载人数、根据人眼标记出的总人数、以及通过YOLOv3和ResNet50分别检测出车厢内人头数和拥挤率;然后,将包含已知信息的样本数据矩阵和期望值向量代入所定义的方程中,拟合出隐含信息:系数向量和偏置项,构建出一个多元一次线性回归方程,在高密度环境中狭窄和遮挡严重等情况下能够获得更为精确的车厢内总人数;最后,通过人数估计线性回归算法,获得最终的车厢内总人数。实验结果表明,所提方法能够预测出公交车上的人数,实时获得公交车上的人群流量,并且通过平均绝对误差(MAE)和均方误差(MSE)对数据进行误差分析后,验证了该方法能够正确地反映公交车拥挤度。 展开更多
关键词 公交车拥挤度 多数据流 回归模型 YOLOv3 ResNet50
下载PDF
Sentiment Analysis Based on Performance of Linear Support Vector Machine and Multinomial Naïve Bayes Using Movie Reviews with Baseline Techniques
3
作者 Mian Muhammad Danyal Sarwar Shah Khan +3 位作者 Muzammil Khan Muhammad Bilal Ghaffar Bilal Khan Muhammad Arshad 《Journal on Big Data》 2023年第1期1-18,共18页
Movies are the better source of entertainment.Every year,a great percentage of movies are released.People comment on movies in the form of reviews after watching them.Since it is difficult to read all of the reviews f... Movies are the better source of entertainment.Every year,a great percentage of movies are released.People comment on movies in the form of reviews after watching them.Since it is difficult to read all of the reviews for a movie,summarizing all of the reviews will help make this decision without wasting time in reading all of the reviews.Opinion mining also known as sentiment analysis is the process of extracting subjective information from textual data.Opinion mining involves identifying and extracting the opinions of individuals,which can be positive,neutral,or negative.The task of opinion mining also called sentiment analysis is performed to understand people’s emotions and attitudes in movie reviews.Movie reviews are an important source of opinion data because they provide insight into the general public’s opinions about a particular movie.The summary of all reviews can give a general idea about the movie.This study compares baseline techniques,Logistic Regression,Random Forest Classifier,Decision Tree,K-Nearest Neighbor,Gradient Boosting Classifier,and Passive Aggressive Classifier with Linear Support Vector Machines and Multinomial Naïve Bayes on the IMDB Dataset of 50K reviews and Sentiment Polarity Dataset Version 2.0.Before applying these classifiers,in pre-processing both datasets are cleaned,duplicate data is dropped and chat words are treated for better results.On the IMDB Dataset of 50K reviews,Linear Support Vector Machines achieve the highest accuracy of 89.48%,and after hyperparameter tuning,the Passive Aggressive Classifier achieves the highest accuracy of 90.27%,while Multinomial Nave Bayes achieves the highest accuracy of 70.69%and 71.04%after hyperparameter tuning on the Sentiment Polarity Dataset Version 2.0.This study highlights the importance of sentiment analysis as a tool for understanding the emotions and attitudes in movie reviews and predicts the performance of a movie based on the average sentiment of all the reviews. 展开更多
关键词 Opinion mining machine learning movie reviews IMDB Dataset of 50K reviews Sentiment Polarity Dataset version 2.0
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部