The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the...The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the ...For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the peak reflection coefficient is obtained,has been observed in both physical experiments and direct numerical simulations to be downshifted from the well-known theoretical prediction.It has long been speculated that the downshift may be attributed to higher-order rippled bottom and free-surface boundary effects,but the intrinsic mechanism remains unclear.By a regular perturbation analysis,we derive the theoretical solution of frequency downshift due to third-order nonlinear effects of both bottom and free-surface boundaries.It is found that the bottom nonlinearity plays the dominant role in frequency downshift while the free-surface nonlinearity actually causes frequency upshift.The frequency downshift/upshift has a quadratic dependence in the bottom/free-surface steepness.Polychromatic bottom leads to a larger frequency downshift relative to the monochromatic bottom.In addition,direct numerical simulations based on the high-order spectral method are conducted to validate the present theory.The theoretical solution of frequency downshift compares well with the numerical simulations and available experimental data.展开更多
As is well known, there exists a tradeoff between the breakdown voltage BVcEO and the cut-off frequency fT for a standard heterojunction bipolar transistor (HBT). In this paper, this tradeoff is alleviated by collec...As is well known, there exists a tradeoff between the breakdown voltage BVcEO and the cut-off frequency fT for a standard heterojunction bipolar transistor (HBT). In this paper, this tradeoff is alleviated by collector doping engineering in the SiGe HBT by utilizing a novel composite of P+ and N- doping layers inside the collector-base (CB) space-charge region (SCR). Compared with the single N-type collector, the introduction of the thin P+ layers provides a reverse electric field weakening the electric field near the CB metallurgical junction without changing the field direction, and the thin N layer further effectively lowers the electric field near the CB metallurgical junction. As a result, the electron temperature near the CB metallurgical junction is lowered, consequently suppressing the impact ionization, thus BVcEO is improved with a slight degradation in fT. The results show that the product of fTXBVcEo is improved from 309.51 GHz.V to 326.35 GHz.V.展开更多
In SPECT, noise is one of the major limitations that degrade image quality. To suppress the noisy signals in an image, digital filters are most commonly applied. However, in SPECT image reconstruction, selection of an...In SPECT, noise is one of the major limitations that degrade image quality. To suppress the noisy signals in an image, digital filters are most commonly applied. However, in SPECT image reconstruction, selection of an appropriate filter and its functions has always remained a difficult task. In this work an attempt was made to investigate the effects of varying cut-off frequencies and in keeping the order of Butterworth filter constant on detectability and contrast of hot and cold re-gions images. A new insert simulating hot and cold regions which provides similar views in a reconstructed image was placed in the phantom’s cylindrical source tank and imaged. Tc-99m radionuclide was distributed uniformly in the phantom. SPECT data were collected in a 20% energy window centered at 140 keV by a Philips ADAC Forte dual head gamma camera mounted with a LEHR collimator. Images were generated by using the filtered backprojection technique. A Butterworth filter of order 5 with cut-off frequencies 0.35 and 0.45 cycles·cm<sup>-1</sup> was applied. Images were examined in terms of hot and cold regions, detectability and contrast. Results show that the hot and cold regions’ detectability and contrast vary with the change of cut-off frequency. With a 0.45 cycles·cm<sup>-1</sup> cut-off frequency, a significant enhancement in contrast of cold regions was achieved as compared to a 0.35 cycles·cm<sup>-1</sup> cut-off frequency. Furthermore, the detectability of hot and cold regions improved with the use of a 0.45 cycles·cm<sup>-1</sup> cut-off frequency. In conclusion, image quality of hot and cold regions affected in a different way with a change of cut-off frequency. Thus, care should be taken in selecting the filter cut-off frequency prior to reconstruction of images;particularly, when both types of regions are expected in the reconstructed image.展开更多
The extraordinary mode(X-mode)lower cut-off frequency is proposed for use in the reflectometry diagnostic on ITER for the electron density profile measurement,which is a trade-off between extreme plasma parameters and...The extraordinary mode(X-mode)lower cut-off frequency is proposed for use in the reflectometry diagnostic on ITER for the electron density profile measurement,which is a trade-off between extreme plasma parameters and the accessible probing frequency.In contemporary experiments,the lower cutoff frequency can be identified at the probing frequency below the electron cyclotron frequency(f_(ce)) under certain plasma conditions.We provide here,for the first time,the experimental validation of the use of the lower cut-off frequency for the density profiles via the reflectometry measurement on EAST.The corresponding group delay of the lower cut-off frequency evolves continuously with the upper one,revealing a reasonable radial coverage extension of reflectometry measurement toward the plasma core.It is concluded that the lower cut-off frequency can be used as a supplement to the upper one in the density profile inversion process,which is of particular interest in the high magnetic field and/or density discharge to extend the radial coverage of reflectometry measurement.展开更多
The availability of ideal conditions like anechoic chamber to characterize some sound parameters, like sound intensity and sound power necessities the determination of free field and cut off frequency measurements. In...The availability of ideal conditions like anechoic chamber to characterize some sound parameters, like sound intensity and sound power necessities the determination of free field and cut off frequency measurements. In this article, full experiment was executed at Wayne State University (Detroit-Michigan), to determine the cut off frequency in all directions;the obtained results showed that the free field can be determined for a specified space. So other tests can take place in this space avoiding regions where reflections and consequently noise can be found. Upon these results tests related to noise abatement in vehicles can be done in such environment.展开更多
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improv...The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.展开更多
In view of the influence and harm of low frequency vibration environment on the structure of spaceflight products,a low frequency dynamic study method for piezoelectric sensor based on the dynamic system of sinusoidal...In view of the influence and harm of low frequency vibration environment on the structure of spaceflight products,a low frequency dynamic study method for piezoelectric sensor based on the dynamic system of sinusoidal pressure is proposed.This method uses a sinusoidal pressure dynamic system with two-way dual channel import and export synchronization technology to study the low frequency characteristics of a piezoelectric sensor of PCB company,and its lower cut-off frequency is 0.26 Hz.It is also studied that when the frequency of the measured vibration or shock signal is 1-200 kHz,the error range of signal positive pressure action time is 4.87%-0.03%.The dynamic compensation for the low frequency of the vibration sensor is carried out,and the compensation effect is good.展开更多
Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high sa...Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF field-effect transistors (RF-FETs). Here we present for the first time the high-performance top-gated RF transistors using millimeter-scale single graphene domain on a SiO2/Si substrate through a conventional microfabrication process. A maximum cut-off frequency of 178 GHz and a peak maximum os- cillation frequency of 35 GHz are achieved in the graphene-domain-based FET with a gate length of 50 nm and 150 nm, respectively. This work shows that the millimeter-scale single graphene domain has great potential applications in RF devices and circuits.展开更多
基金the National Natural Science Foun-dation of China(Grant Nos.91963201 and 12174163)the 111 Project(Grant No.B20063).
文摘The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. U1706230 and51379071)the Key Project of NSFC-Shandong Joint Research Funding POW3C (Grant No. U1906230)the National Science Fund for Distinguished Young Scholars (Grant No. 51425901)
文摘For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the peak reflection coefficient is obtained,has been observed in both physical experiments and direct numerical simulations to be downshifted from the well-known theoretical prediction.It has long been speculated that the downshift may be attributed to higher-order rippled bottom and free-surface boundary effects,but the intrinsic mechanism remains unclear.By a regular perturbation analysis,we derive the theoretical solution of frequency downshift due to third-order nonlinear effects of both bottom and free-surface boundaries.It is found that the bottom nonlinearity plays the dominant role in frequency downshift while the free-surface nonlinearity actually causes frequency upshift.The frequency downshift/upshift has a quadratic dependence in the bottom/free-surface steepness.Polychromatic bottom leads to a larger frequency downshift relative to the monochromatic bottom.In addition,direct numerical simulations based on the high-order spectral method are conducted to validate the present theory.The theoretical solution of frequency downshift compares well with the numerical simulations and available experimental data.
基金supported by the National Natural Science Foundation of China(Grant Nos.60776051,61006059,and 61006044)the Beijing Municipal Natural Science Foundation,China(Grant Nos.4142007,4143059,4082007,and 4122014)the Beijing Municipal Education Committee,China(Grant Nos.KM200710005015 and KM200910005001)
文摘As is well known, there exists a tradeoff between the breakdown voltage BVcEO and the cut-off frequency fT for a standard heterojunction bipolar transistor (HBT). In this paper, this tradeoff is alleviated by collector doping engineering in the SiGe HBT by utilizing a novel composite of P+ and N- doping layers inside the collector-base (CB) space-charge region (SCR). Compared with the single N-type collector, the introduction of the thin P+ layers provides a reverse electric field weakening the electric field near the CB metallurgical junction without changing the field direction, and the thin N layer further effectively lowers the electric field near the CB metallurgical junction. As a result, the electron temperature near the CB metallurgical junction is lowered, consequently suppressing the impact ionization, thus BVcEO is improved with a slight degradation in fT. The results show that the product of fTXBVcEo is improved from 309.51 GHz.V to 326.35 GHz.V.
文摘In SPECT, noise is one of the major limitations that degrade image quality. To suppress the noisy signals in an image, digital filters are most commonly applied. However, in SPECT image reconstruction, selection of an appropriate filter and its functions has always remained a difficult task. In this work an attempt was made to investigate the effects of varying cut-off frequencies and in keeping the order of Butterworth filter constant on detectability and contrast of hot and cold re-gions images. A new insert simulating hot and cold regions which provides similar views in a reconstructed image was placed in the phantom’s cylindrical source tank and imaged. Tc-99m radionuclide was distributed uniformly in the phantom. SPECT data were collected in a 20% energy window centered at 140 keV by a Philips ADAC Forte dual head gamma camera mounted with a LEHR collimator. Images were generated by using the filtered backprojection technique. A Butterworth filter of order 5 with cut-off frequencies 0.35 and 0.45 cycles·cm<sup>-1</sup> was applied. Images were examined in terms of hot and cold regions, detectability and contrast. Results show that the hot and cold regions’ detectability and contrast vary with the change of cut-off frequency. With a 0.45 cycles·cm<sup>-1</sup> cut-off frequency, a significant enhancement in contrast of cold regions was achieved as compared to a 0.35 cycles·cm<sup>-1</sup> cut-off frequency. Furthermore, the detectability of hot and cold regions improved with the use of a 0.45 cycles·cm<sup>-1</sup> cut-off frequency. In conclusion, image quality of hot and cold regions affected in a different way with a change of cut-off frequency. Thus, care should be taken in selecting the filter cut-off frequency prior to reconstruction of images;particularly, when both types of regions are expected in the reconstructed image.
基金supported by the National Key R&D Program of China(Nos.2017YFE0301205 and 2019YFE03040002)National Natural Science Foundation of China(Nos.11875289,11975271,11805136,12075284,and 12175277)China Postdoctoral Science Foundation(No.2021M703256)。
文摘The extraordinary mode(X-mode)lower cut-off frequency is proposed for use in the reflectometry diagnostic on ITER for the electron density profile measurement,which is a trade-off between extreme plasma parameters and the accessible probing frequency.In contemporary experiments,the lower cutoff frequency can be identified at the probing frequency below the electron cyclotron frequency(f_(ce)) under certain plasma conditions.We provide here,for the first time,the experimental validation of the use of the lower cut-off frequency for the density profiles via the reflectometry measurement on EAST.The corresponding group delay of the lower cut-off frequency evolves continuously with the upper one,revealing a reasonable radial coverage extension of reflectometry measurement toward the plasma core.It is concluded that the lower cut-off frequency can be used as a supplement to the upper one in the density profile inversion process,which is of particular interest in the high magnetic field and/or density discharge to extend the radial coverage of reflectometry measurement.
文摘The availability of ideal conditions like anechoic chamber to characterize some sound parameters, like sound intensity and sound power necessities the determination of free field and cut off frequency measurements. In this article, full experiment was executed at Wayne State University (Detroit-Michigan), to determine the cut off frequency in all directions;the obtained results showed that the free field can be determined for a specified space. So other tests can take place in this space avoiding regions where reflections and consequently noise can be found. Upon these results tests related to noise abatement in vehicles can be done in such environment.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793
文摘The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.
文摘In view of the influence and harm of low frequency vibration environment on the structure of spaceflight products,a low frequency dynamic study method for piezoelectric sensor based on the dynamic system of sinusoidal pressure is proposed.This method uses a sinusoidal pressure dynamic system with two-way dual channel import and export synchronization technology to study the low frequency characteristics of a piezoelectric sensor of PCB company,and its lower cut-off frequency is 0.26 Hz.It is also studied that when the frequency of the measured vibration or shock signal is 1-200 kHz,the error range of signal positive pressure action time is 4.87%-0.03%.The dynamic compensation for the low frequency of the vibration sensor is carried out,and the compensation effect is good.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00600,2011CBA00601,and 2013CBA01604)the National Natural Science Foundation of China(Grant No.60625403)the National Science and Technology Major Project of China(Grant No.2011ZX02707)
文摘Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF field-effect transistors (RF-FETs). Here we present for the first time the high-performance top-gated RF transistors using millimeter-scale single graphene domain on a SiO2/Si substrate through a conventional microfabrication process. A maximum cut-off frequency of 178 GHz and a peak maximum os- cillation frequency of 35 GHz are achieved in the graphene-domain-based FET with a gate length of 50 nm and 150 nm, respectively. This work shows that the millimeter-scale single graphene domain has great potential applications in RF devices and circuits.