Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of Ch...Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed Ⅰ, Ⅱ, Ⅳ and Ⅴ(0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed Ⅲ. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed Ⅰ and Ⅱ) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed Ⅲ, Ⅳ and Ⅴ) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.展开更多
The distribution of different nitrogen forms and their spatial and temporal variations in different pollution types of tributaries or reaches were investigated. Based on the catchments characteristics the tributaries ...The distribution of different nitrogen forms and their spatial and temporal variations in different pollution types of tributaries or reaches were investigated. Based on the catchments characteristics the tributaries or reaches can be classified into 4 types, including headwater in mountainous areas (type Ⅰ), agricultural non-point source (NPS) pollution in rural areas (type Ⅱ), municipal and industrial pollution in urban areas (type Ⅲ), and combined pollution in main stream (type IV). Water samples were collected monthly from July 2003 to June 2006 in the Cao-E River Basin in Zhejiang, eastern China. The concentrations of NO3^--N, NH4^+ -N, and total nitrogen (TN) were measured. The mean concentrations of NO3^- -N were decreased in the sequence type IV 〉 type Ⅱ〉 type Ⅲ 〉 type Ⅰ, whereas, NH4^+-N, total organic nitrogen (TON), and TN were in the sequence: type Ⅲ〉 type Ⅳ 〉 type Ⅱ〉 type Ⅰ. In headwater and rural reaches, CNO^-2-N was much higher than Crea^+ 4-N. In urban reaches, TON and NH4^+ -N were the main forms, accounting for 54.7% and 32.1% of TN, respectively. In the whole river system, Crea^+ 4--N decreased with increasing distance from cities, and CNo^-3 -N increased with the increasing area of farmland in the catchments. With increased river flow, CNO^-3 N increased and Crea4^+-N decreased in all types of reaches, while the variations of CTON and CTN were different. For TN, the concentration may be decreased with the increase of river flow, but the export load always increased.展开更多
The Lake Tian E Zhou(TEZ,an oxbow lake)was formed during the rerouting of the Changjiang River in 1972,with strong influences from the main river channel and flood events.Herein,a sediment core was collected from the ...The Lake Tian E Zhou(TEZ,an oxbow lake)was formed during the rerouting of the Changjiang River in 1972,with strong influences from the main river channel and flood events.Herein,a sediment core was collected from the Lake TEZ for the measurements of carbon isotopes and biomarkers,including stable carbon isotopes(δ13C),radiocarbon composition(?14C),and lignin phenols,as well as lead-210 to reconstruct recent heavy flood events over the past 70 years.At the 24–26 cm interval,the sediment contained the highest OC%,TN%,and lignin phenols content,as well as significantly depleted 13C but enriched 14C,corresponding to the extreme flood event in 1998.In addition,statistics from t-test showed that lignin phenols normalized to OC(Λ8),the concentration of 3,5-dihydroxy benzoic acid(3,5-BD),and the ratio of p-hydroxy benzophenone to total hydroxyl phenols(PHB/HP)were all significantly different between the layers containing flood deposits and the layers deposited under normal non-flood conditions(p<0.05).These results indicate that the later three parameters are highly related to flood events and can be used as compelling proxies,along with sediment chronology,for hydrological changes and storm/flood events in the river basin and coastal marine environments.展开更多
The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the re...The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the reach. In order to take the circulation currents in the bends into account, the momentum equations were improved by adding an additional source term. Comparison of the numerical simulation with field measurements indicates that the improved two-dimensional depth-averaged RNG k-e model can improve the accuracy of the numerical simulation. A rapid adaptive algorithm was constructed, which can automatically adjust Manning's roughness coefficient in different parts of the study river reach. As a result, not only can the trial computation time be significantly shortened, but the accuracy of the numerical simulation can also be greatly improved. Comparison of the simulated and measured water surface slopes for four typical cases shows that the longitudinal and transverse slopes of the water surface increase with the average velocity upstream. In addition, comparison was made between the positions of the talweg and the main streamline, which coincide for most of the study river reach. However, deviations between the positions of the talweg and the main streamline were found at the junction of two bends, at the position where the river width suddenly decreases or increases.展开更多
The aim of the study was to analyse and identify microbial constituents in the water and sediment samples with comparison of the River to World Health Organisation (WHO, 2011) standard for drinking water and Federal M...The aim of the study was to analyse and identify microbial constituents in the water and sediment samples with comparison of the River to World Health Organisation (WHO, 2011) standard for drinking water and Federal Ministry of Environment (FME, 2006) and their public health implications with respect to water quality. The microbial assay of Otamiri River was investigated using Standard plate count. The result indicates that microbial constituents of Otamiri river obtained at five strategic gauge stations designated SSWS1 (Egbu), SSWS2 (Timber Market), SSWS3 (FUTO), DOWNSTREAM (Mbirichi) and CONTROL POINT with mean Total coliform Count of 3.0 × 102, 3.0 × 103, 4.1 × 103 and 1.0 × 103 cfu/100ml with control point value of 0.5 × 103 respectively. The mean Total Bacteria Count was 3.0 × 104, 2.1 × 103, 1.1 × 103 and 0.8 × 103 cfu/100ml respectively with control point value of 0.2 × 103 while the mean values for Total E. coli Count were 1.1 × 102, 3.0 × 102, 4 × 103 and 2.0 × 103 cfu/100ml with control point value of 0.2 × 103. The biochemical identification of some organisms in water was Escherichia coli, Vibro spp., Klebsiella spp., and Entrobacteria spp. The result of stream sediment samples indicates that the mean Total Bacterial Count was 3.5 × 104, 5.0 × 104, 6.5 × 104 and 2.0 × 104 cfu/g respectively with 1.5 × 102 as control point value and that of Total Coliform Count was 6.5 × 103, 2.0 × 103, 2.5 × 103 and 0.8 × 103 cfu/g respectively with control point value of 0.5 × 102. While for the Total E. coli Count, the values were 2.5 × 103, 1.0 × 103, 2.5 × 103 and 0.5 × 105 cfu/g respective with control as 0.5 × 102. Biochemical identification of some organisms in sediments includes: Escherichia coli, Vibro spp., Klebsiella spp., Entrobacteria spp. and Bacillus spp. The mean total bacterial count, total coli form count and total E. coli, were not in conformity with both World Health Organisation (WHO, 2011) Standard for drinking water and Federal Ministry of Environment (FME) 2006 standard for soil and thus constitute a threat to the River;these are attributed to waste dumps and anthropogenic activities around the five stations. The presence of bacteria in water can cause cholera, hepatitis, dysentery and typhoid. The microbial constituents can be reduced by chlorination.展开更多
Antimicrobial use in agriculture, livestock and human health has increased over the years leading to the increase in antimicrobial resistance that can also find its way to the aquatic environment. Rivers can act as re...Antimicrobial use in agriculture, livestock and human health has increased over the years leading to the increase in antimicrobial resistance that can also find its way to the aquatic environment. Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of multidrug resistant (MDR) strains to animals and humans using water. A total of 318 water samples were collected from six different sampling points along Athi River and E. coli isolates were subjected to Kirby-Bauer diffusion method for antimicrobial susceptibility testing. The total mean coliform count of the sampled sites was 2.7 × 104 (cfu/mL). E. coli isolates were most resistant to ampicillin (63.8%) and most susceptible to gentamicin (99.4%). MDR strains (resistance to ≥3 classes of antibiotics) accounted for 65.4% of all the isolates. The site recorded to have human industrial and agricultural zone activities had strains that were significantly more resistant to ampicillin, cefoxitin, amoxicillin/clavulanic acid (P ≤ 0.05) than isolates from the section of the river traversing virgin land and land with minimum human activities. This study indicates that E. coli strains isolated from Athi River were highly MDR and most resistant to some antimicrobial classes (ampicillin and cefoxitin) which constitute a potential risk to human and animal health.展开更多
Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of resistance, virulence and integron 1 genes. A cross-sectional study was carried out where 318 water samples were collected (...Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of resistance, virulence and integron 1 genes. A cross-sectional study was carried out where 318 water samples were collected (53 from each site) and from the samples, 318 E. coli isolates were analysed for resistance genes, virulence genes and integron 1 using Polymerase Chain Reaction. 22% of the isolates had blaTEM, 33% had blaCTX-M and 28% had blaCMY. Prevalence of typical Enteropathogenic E. coli strains (carrying both eae and bfp genes) was 5% while the prevalence of atypical Enteropathogenic E. coli (carying only eae) was 1.8%. The prevalence of Enteroaggregative E. coli carrying the aggr genes was 11%. The prevalence of Enterotoxigenic E. coli encoding only lt toxin was 16 (5%) and while those carrying only st toxin was 6.9%. The prevalence of Enteroinvasive E. coli strains encoding as IpaH was 5% while that of strains, adherent invasive E. coli, carrying adherent invasive gene inv was 8.7%. 36% isolates were positive for class 1 integrons which were mostly isolated near the sewage effluent from waste treatment plant. Anthropogenic activities and close proximity to sewage treatment plant were found to play a key role in pollution of water body and accumulation of resistance and virulence genes. These results suggest that waste treatment plant may act as reservoir of resistance, virulence and integron 1 genes and is a potential risk to human and animal health in the region.展开更多
In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration A...In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration Agency)and VUA(Vrije University Amsterdam and NASA)over Maqu County,Source Area of the Yellow River(SAYR),China.Re sults show that the VUA soil moisture product performs the best among the three AMSR-E soil moisture products in the study area,with a minimum RMSE(root mean square error)of 0.08(0.10)m3/m3 and smallest absolute error of 0.07(0.08)m3/m3 at the grassland area with ascending(descending)data.Therefore,the VUA soil moisture product is used to describe the spatial variation of soil moisture during the 2010 growing season over SAYR.The VUA soil moisture product shows that soil moisture presents a declining trend from east south(0.42 m3/m3)to west north(0.23 m3/m3),with good agreement with a general precipitation distribution.The center of SAYR presents extreme wetness(0.60 m3/m3)dur ing the whole study period,especially in July,while the head of SAYR presents a high level soil moisture(0.23 m3/m3)in July,August and September.展开更多
This paper describes some details and procedural steps in the equivalent resistance (E-R) method for simplifying the pier group of the Sutong Bridge, which is located on the tidal reach of the lower Yangtze River, i...This paper describes some details and procedural steps in the equivalent resistance (E-R) method for simplifying the pier group of the Sutong Bridge, which is located on the tidal reach of the lower Yangtze River, in Jiangsu Province. Using a two-dimensional tidal current numerical model, three different models were established: the non-bridge pier model, original bridge pier model, and simplified bridge pier model. The difference in hydrodynamic parameters, including water level, velocity, and diversion ratio, as well as time efficiency between these three models is discussed in detail. The results show that simplifying the pier group using the E-R method influences the water level and velocity near the piers, but has no influence on the diversion ratio of each cross-section of the Xuliujing reach located in the lower Yangtze River. Furthermore, the simplified bridge pier model takes half the calculation time that the original bridge pier model needs. Thus, it is concluded that the E-R method can be use to simplify bridge piers in tidal river section modeling reasonably and efficiently.展开更多
文摘Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed Ⅰ, Ⅱ, Ⅳ and Ⅴ(0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed Ⅲ. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed Ⅰ and Ⅱ) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed Ⅲ, Ⅳ and Ⅴ) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.
基金supported by the National Natural Science Foundation of China (No. 40571070)the National Basic Research Program (973) of China (No.2002CB410807)the Project of Science and Technology of Zhejiang Province (No. 2004C33067)
文摘The distribution of different nitrogen forms and their spatial and temporal variations in different pollution types of tributaries or reaches were investigated. Based on the catchments characteristics the tributaries or reaches can be classified into 4 types, including headwater in mountainous areas (type Ⅰ), agricultural non-point source (NPS) pollution in rural areas (type Ⅱ), municipal and industrial pollution in urban areas (type Ⅲ), and combined pollution in main stream (type IV). Water samples were collected monthly from July 2003 to June 2006 in the Cao-E River Basin in Zhejiang, eastern China. The concentrations of NO3^--N, NH4^+ -N, and total nitrogen (TN) were measured. The mean concentrations of NO3^- -N were decreased in the sequence type IV 〉 type Ⅱ〉 type Ⅲ 〉 type Ⅰ, whereas, NH4^+-N, total organic nitrogen (TON), and TN were in the sequence: type Ⅲ〉 type Ⅳ 〉 type Ⅱ〉 type Ⅰ. In headwater and rural reaches, CNO^-2-N was much higher than Crea^+ 4-N. In urban reaches, TON and NH4^+ -N were the main forms, accounting for 54.7% and 32.1% of TN, respectively. In the whole river system, Crea^+ 4--N decreased with increasing distance from cities, and CNo^-3 -N increased with the increasing area of farmland in the catchments. With increased river flow, CNO^-3 N increased and Crea4^+-N decreased in all types of reaches, while the variations of CTON and CTN were different. For TN, the concentration may be decreased with the increase of river flow, but the export load always increased.
基金The National Natural Science Foundation of China under contract Nos 41021064,41276081 and 41606211the 111 Project under contract No.B08022the Scientific Research Fund of Second Institute of Oceanography,MNR under contract No.JG1806
文摘The Lake Tian E Zhou(TEZ,an oxbow lake)was formed during the rerouting of the Changjiang River in 1972,with strong influences from the main river channel and flood events.Herein,a sediment core was collected from the Lake TEZ for the measurements of carbon isotopes and biomarkers,including stable carbon isotopes(δ13C),radiocarbon composition(?14C),and lignin phenols,as well as lead-210 to reconstruct recent heavy flood events over the past 70 years.At the 24–26 cm interval,the sediment contained the highest OC%,TN%,and lignin phenols content,as well as significantly depleted 13C but enriched 14C,corresponding to the extreme flood event in 1998.In addition,statistics from t-test showed that lignin phenols normalized to OC(Λ8),the concentration of 3,5-dihydroxy benzoic acid(3,5-BD),and the ratio of p-hydroxy benzophenone to total hydroxyl phenols(PHB/HP)were all significantly different between the layers containing flood deposits and the layers deposited under normal non-flood conditions(p<0.05).These results indicate that the later three parameters are highly related to flood events and can be used as compelling proxies,along with sediment chronology,for hydrological changes and storm/flood events in the river basin and coastal marine environments.
基金supported by the National Natural Science Foundation of China(Grants No.11361002 and 91230111)the Natural Science Foundation of Ningxia,China(Grant No.NZ13086)+1 种基金the Project of Beifang University of Nationalities,China(Grant No.2012XZK05)the Foreign Expert Project of Beifang University of Nationalities,China,and the Visiting Scholar Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,China(Grant No.2013A011)
文摘The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the reach. In order to take the circulation currents in the bends into account, the momentum equations were improved by adding an additional source term. Comparison of the numerical simulation with field measurements indicates that the improved two-dimensional depth-averaged RNG k-e model can improve the accuracy of the numerical simulation. A rapid adaptive algorithm was constructed, which can automatically adjust Manning's roughness coefficient in different parts of the study river reach. As a result, not only can the trial computation time be significantly shortened, but the accuracy of the numerical simulation can also be greatly improved. Comparison of the simulated and measured water surface slopes for four typical cases shows that the longitudinal and transverse slopes of the water surface increase with the average velocity upstream. In addition, comparison was made between the positions of the talweg and the main streamline, which coincide for most of the study river reach. However, deviations between the positions of the talweg and the main streamline were found at the junction of two bends, at the position where the river width suddenly decreases or increases.
文摘The aim of the study was to analyse and identify microbial constituents in the water and sediment samples with comparison of the River to World Health Organisation (WHO, 2011) standard for drinking water and Federal Ministry of Environment (FME, 2006) and their public health implications with respect to water quality. The microbial assay of Otamiri River was investigated using Standard plate count. The result indicates that microbial constituents of Otamiri river obtained at five strategic gauge stations designated SSWS1 (Egbu), SSWS2 (Timber Market), SSWS3 (FUTO), DOWNSTREAM (Mbirichi) and CONTROL POINT with mean Total coliform Count of 3.0 × 102, 3.0 × 103, 4.1 × 103 and 1.0 × 103 cfu/100ml with control point value of 0.5 × 103 respectively. The mean Total Bacteria Count was 3.0 × 104, 2.1 × 103, 1.1 × 103 and 0.8 × 103 cfu/100ml respectively with control point value of 0.2 × 103 while the mean values for Total E. coli Count were 1.1 × 102, 3.0 × 102, 4 × 103 and 2.0 × 103 cfu/100ml with control point value of 0.2 × 103. The biochemical identification of some organisms in water was Escherichia coli, Vibro spp., Klebsiella spp., and Entrobacteria spp. The result of stream sediment samples indicates that the mean Total Bacterial Count was 3.5 × 104, 5.0 × 104, 6.5 × 104 and 2.0 × 104 cfu/g respectively with 1.5 × 102 as control point value and that of Total Coliform Count was 6.5 × 103, 2.0 × 103, 2.5 × 103 and 0.8 × 103 cfu/g respectively with control point value of 0.5 × 102. While for the Total E. coli Count, the values were 2.5 × 103, 1.0 × 103, 2.5 × 103 and 0.5 × 105 cfu/g respective with control as 0.5 × 102. Biochemical identification of some organisms in sediments includes: Escherichia coli, Vibro spp., Klebsiella spp., Entrobacteria spp. and Bacillus spp. The mean total bacterial count, total coli form count and total E. coli, were not in conformity with both World Health Organisation (WHO, 2011) Standard for drinking water and Federal Ministry of Environment (FME) 2006 standard for soil and thus constitute a threat to the River;these are attributed to waste dumps and anthropogenic activities around the five stations. The presence of bacteria in water can cause cholera, hepatitis, dysentery and typhoid. The microbial constituents can be reduced by chlorination.
文摘Antimicrobial use in agriculture, livestock and human health has increased over the years leading to the increase in antimicrobial resistance that can also find its way to the aquatic environment. Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of multidrug resistant (MDR) strains to animals and humans using water. A total of 318 water samples were collected from six different sampling points along Athi River and E. coli isolates were subjected to Kirby-Bauer diffusion method for antimicrobial susceptibility testing. The total mean coliform count of the sampled sites was 2.7 × 104 (cfu/mL). E. coli isolates were most resistant to ampicillin (63.8%) and most susceptible to gentamicin (99.4%). MDR strains (resistance to ≥3 classes of antibiotics) accounted for 65.4% of all the isolates. The site recorded to have human industrial and agricultural zone activities had strains that were significantly more resistant to ampicillin, cefoxitin, amoxicillin/clavulanic acid (P ≤ 0.05) than isolates from the section of the river traversing virgin land and land with minimum human activities. This study indicates that E. coli strains isolated from Athi River were highly MDR and most resistant to some antimicrobial classes (ampicillin and cefoxitin) which constitute a potential risk to human and animal health.
文摘Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of resistance, virulence and integron 1 genes. A cross-sectional study was carried out where 318 water samples were collected (53 from each site) and from the samples, 318 E. coli isolates were analysed for resistance genes, virulence genes and integron 1 using Polymerase Chain Reaction. 22% of the isolates had blaTEM, 33% had blaCTX-M and 28% had blaCMY. Prevalence of typical Enteropathogenic E. coli strains (carrying both eae and bfp genes) was 5% while the prevalence of atypical Enteropathogenic E. coli (carying only eae) was 1.8%. The prevalence of Enteroaggregative E. coli carrying the aggr genes was 11%. The prevalence of Enterotoxigenic E. coli encoding only lt toxin was 16 (5%) and while those carrying only st toxin was 6.9%. The prevalence of Enteroinvasive E. coli strains encoding as IpaH was 5% while that of strains, adherent invasive E. coli, carrying adherent invasive gene inv was 8.7%. 36% isolates were positive for class 1 integrons which were mostly isolated near the sewage effluent from waste treatment plant. Anthropogenic activities and close proximity to sewage treatment plant were found to play a key role in pollution of water body and accumulation of resistance and virulence genes. These results suggest that waste treatment plant may act as reservoir of resistance, virulence and integron 1 genes and is a potential risk to human and animal health in the region.
基金supported in part by the Programs of National Natural Science Foundation of China (41675157, 91537212)
文摘In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration Agency)and VUA(Vrije University Amsterdam and NASA)over Maqu County,Source Area of the Yellow River(SAYR),China.Re sults show that the VUA soil moisture product performs the best among the three AMSR-E soil moisture products in the study area,with a minimum RMSE(root mean square error)of 0.08(0.10)m3/m3 and smallest absolute error of 0.07(0.08)m3/m3 at the grassland area with ascending(descending)data.Therefore,the VUA soil moisture product is used to describe the spatial variation of soil moisture during the 2010 growing season over SAYR.The VUA soil moisture product shows that soil moisture presents a declining trend from east south(0.42 m3/m3)to west north(0.23 m3/m3),with good agreement with a general precipitation distribution.The center of SAYR presents extreme wetness(0.60 m3/m3)dur ing the whole study period,especially in July,while the head of SAYR presents a high level soil moisture(0.23 m3/m3)in July,August and September.
基金supported by the Innovation Project of Graduate Education in Jiangsu Province during 2011 (Grant No. CXZZ11_0449)the Research Plan Project of Transportation Science in Jiangsu Province (Grant No. 20100714-30HDKY001-2)
文摘This paper describes some details and procedural steps in the equivalent resistance (E-R) method for simplifying the pier group of the Sutong Bridge, which is located on the tidal reach of the lower Yangtze River, in Jiangsu Province. Using a two-dimensional tidal current numerical model, three different models were established: the non-bridge pier model, original bridge pier model, and simplified bridge pier model. The difference in hydrodynamic parameters, including water level, velocity, and diversion ratio, as well as time efficiency between these three models is discussed in detail. The results show that simplifying the pier group using the E-R method influences the water level and velocity near the piers, but has no influence on the diversion ratio of each cross-section of the Xuliujing reach located in the lower Yangtze River. Furthermore, the simplified bridge pier model takes half the calculation time that the original bridge pier model needs. Thus, it is concluded that the E-R method can be use to simplify bridge piers in tidal river section modeling reasonably and efficiently.