In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TO...In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TOPEX/POSEIDON (T/P) derived datasets by means of the variational adjoint approach in such a way that unknown internal model parameters, bottom topography, friction coefficients and open boundary conditions, for example, are adjusted during the process. The numerical model is used as a forward model. After the along-track T/P data are processed, two classical methods, i.e. harmonic and response analysis, are implemented to estimate the tide from such datasets with a domain covering the model area extending from 0° to 41°N in latitude and from 99°E to 142°E in longitude. And the results of these two methods are compared and interpreted. The numerical simulation is performed for 16 major constituents. In the data assimilation experiments, three types of unknown parameters (water depth, bottom friction and tidal open boundary conditions in the model equations) are chosen as control variables. Among the various types of data assimilation experiments, the calibration of water depth brings the most promising results. By comparing the results with selected tide gauge data, the average absolute errors are decreased from 7.9 cm to 6.8 cm for amplitude and from 13.0° to 9.0° for phase with respect to the semidiurnal tide M2 constituent, which is the largest tidal constituent in the model area. After the data assimilation experiment is performed, the comparison between model results and tide gauge observation for water levels shows that the RMS errors decrease by 9 cm for a total of 14 stations, mostly selected along the coast of China's Mainland, when a one-month period is considered, and the correlation coefficients improve for most tidal stations among these stations.展开更多
Some important tidal features of 8 major tidal constituents ( M 2, S 2, K 1, O 1, P 1, Sa, N 2 and K 2 ) in the China Seas and their adjacent sea areas were obtained using six years’ TOPEX/POSEIDON altimeter data. Th...Some important tidal features of 8 major tidal constituents ( M 2, S 2, K 1, O 1, P 1, Sa, N 2 and K 2 ) in the China Seas and their adjacent sea areas were obtained using six years’ TOPEX/POSEIDON altimeter data. The results showed that the obtained co tidal and co range charts for these major tidal constituents agreed well with those of previous researches using observational data from coastal tidal gauge stations and numerical models.展开更多
We developed a Global Ocean Circulation and Tide Model (GOCTM) with coarse grids in the open deep ocean degrading ‘smoothly’ into the highly resolved China Seas (CS) of refined grids to study the tides and circu...We developed a Global Ocean Circulation and Tide Model (GOCTM) with coarse grids in the open deep ocean degrading ‘smoothly’ into the highly resolved China Seas (CS) of refined grids to study the tides and circulation there.GOCTM is based on the framework of the Finite Volume approach for better mass conservation through improved transports across the discrete individual control volume.It also takes a full advantage of the geometric flexibility of unstructured mesh using a realistic global topography including the Arctic Ocean.The CS are given a special focus by refining the unstructured grids,but they are embedded into global domain naturally.Furthermore,GOCTM not only successfully avoids the treatment of the open boundaries,but also optimizes the trade-off between computational cost and model accuracy.Meanwhile,GOCTM is driven by the astronomical tide-generating potential and the secondary tide-generating potential directly,together with the wind stress and heat flux.GOCTM succeeds in reproducing the global eight principal tidal harmonic constants.Particularly,the simulated tidal results in the CS are improved compared to some other regional models with the discrepancy of 3.9 cm for M 2 tide.This idea of GOCTM can also be referred for other regional ocean study.展开更多
The wind-sea and swell climates in the China Seas are investigated by using the 27-yr Integrated Ocean Waves for Geophysical and other Applications(IOWAGA)hindcast data.A comparison is made between the significant wav...The wind-sea and swell climates in the China Seas are investigated by using the 27-yr Integrated Ocean Waves for Geophysical and other Applications(IOWAGA)hindcast data.A comparison is made between the significant wave height from the IOWAGA hindcasts and that from a jointly calibrated altimetry dataset,showing the good performance of the IOWAGA hindcasts in the China Seas.A simple but practical method of diagnosing whether the sea state is wind-sea-dominant or swell-dominant is proposed based on spectral partitioning.Different from the characteristics of wind-seas and swells in the open ocean,the wave fields in the enclosed seas such as the China Seas are predominated by wind-sea events in respect of both frequencies of occurrences and energy weights,due to the island sheltering and limited fetches.The energy weights of wind-seas in a given location is usually more significant than the occurrence probability of wind-sea-dominated events,as the wave energy is higher in the wind-sea events than in the swell events on average and extreme wave heights are mostly related to wind-seas.The most energetic swells in the China Seas(and other enclosed seas)are‘local swells’,having just propagated out of their generation areas.However,the swells coming from the West Pacific also play an important role in the wave climate of the China Seas,which can only be revealed by partitioning different swell systems in the wave spectra as the energy of them is significantly less than the‘local swells’.展开更多
Collinear analysis technique is widely used for determining sea surface variability with Geosat altimeter data from its Exact Repeat Mission (ERM). But most of the researches have been only on global scale or in ocean...Collinear analysis technique is widely used for determining sea surface variability with Geosat altimeter data from its Exact Repeat Mission (ERM). But most of the researches have been only on global scale or in oceans deeper than 2000 m In shallow shelf waters this method is hampered by the inaccuracy of ocean tide data supplied with Geosat Geophysical Data Records (GDRs). This work uses a modified collinear analysis technique characterized by simultaneous separation of mean sea level and ocean tide with the least squares method, to compute sea surface variability in the Northwest Pacific Ocean and eastern China Seas. The mean sea level map obtained contains not only bathymetric but also dynamic features such as amphidromes, indicating considerable improvement over previous works. Our sea surface variability maps show dearly the main current system, the well-known Zhejiang coastal upwelling, and a northern East China Sea meso-scale eddy in good agreement with satellite sea surface temperature (SST) bservation and historical in situ measurement. These all suggest that meaningful and reliable oceanographic results can still be achieved in shallow shelf waters from Geosat altimetry as long as proper data processing techniques are applied.展开更多
The distribution of ostracods and benthonic foraminifers in the China sea area is briefly reviewed from the paleobio-geographic viewpoint in this paper. Three regions can be distinguished in the area on the basis of m...The distribution of ostracods and benthonic foraminifers in the China sea area is briefly reviewed from the paleobio-geographic viewpoint in this paper. Three regions can be distinguished in the area on the basis of modern distribution data: Region I (the Huanghai Sea and the Bohai Sea) with cool and temperate forms, Region I (the East China Sea and the northern part of the South China Sea) with subtropical warm-water forms and Region Ⅲ (central and southern parts of the South China Sea) with larger foraminifers and other tropical warm-water forms. The occurrence of Nummulites-Discocyclira fauna in the Eocene deposits of the East China Sea indicates a northward extension of tropical zoogeographical region at the time, whereas the distribution pattern of the Miocene Nephrolepidina-Miogypsiua-Austrotrillina fauna in the South China Sea resembles that of the present larger-foraminiferal fauna. In the South China Sea and Taiwan, a warm-water fauna with Asterorotalia and Pseudorotalia first appeared in late Miocene and then flourished in the Pliocene. Its northward invasion into the Bohai Sea area during late Pleistocene may be related to changes in current system. Many of the endemic foraminiferal and ostracod genera and species ( Sinocytheridea etc. ) in recent coastal faunas probably have originated from the South China Sea, and their occurrence in Japan or Australia may be indicative of ties between these areas during glacial times.展开更多
文摘In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TOPEX/POSEIDON (T/P) derived datasets by means of the variational adjoint approach in such a way that unknown internal model parameters, bottom topography, friction coefficients and open boundary conditions, for example, are adjusted during the process. The numerical model is used as a forward model. After the along-track T/P data are processed, two classical methods, i.e. harmonic and response analysis, are implemented to estimate the tide from such datasets with a domain covering the model area extending from 0° to 41°N in latitude and from 99°E to 142°E in longitude. And the results of these two methods are compared and interpreted. The numerical simulation is performed for 16 major constituents. In the data assimilation experiments, three types of unknown parameters (water depth, bottom friction and tidal open boundary conditions in the model equations) are chosen as control variables. Among the various types of data assimilation experiments, the calibration of water depth brings the most promising results. By comparing the results with selected tide gauge data, the average absolute errors are decreased from 7.9 cm to 6.8 cm for amplitude and from 13.0° to 9.0° for phase with respect to the semidiurnal tide M2 constituent, which is the largest tidal constituent in the model area. After the data assimilation experiment is performed, the comparison between model results and tide gauge observation for water levels shows that the RMS errors decrease by 9 cm for a total of 14 stations, mostly selected along the coast of China's Mainland, when a one-month period is considered, and the correlation coefficients improve for most tidal stations among these stations.
文摘Some important tidal features of 8 major tidal constituents ( M 2, S 2, K 1, O 1, P 1, Sa, N 2 and K 2 ) in the China Seas and their adjacent sea areas were obtained using six years’ TOPEX/POSEIDON altimeter data. The results showed that the obtained co tidal and co range charts for these major tidal constituents agreed well with those of previous researches using observational data from coastal tidal gauge stations and numerical models.
基金The Hi-tech Research and Development Program (863) of China under contract No.2007AA09Z117the National Key Technology R&D Program under contract No.2011BAC03B02+1 种基金the National Natural Science Fund of China under contract No.40976001the National Marine Renewable Energy Program under contract Nos GHME2010ZC08,No.GHME 2010ZC11 and No.GHME2010ZC01
文摘We developed a Global Ocean Circulation and Tide Model (GOCTM) with coarse grids in the open deep ocean degrading ‘smoothly’ into the highly resolved China Seas (CS) of refined grids to study the tides and circulation there.GOCTM is based on the framework of the Finite Volume approach for better mass conservation through improved transports across the discrete individual control volume.It also takes a full advantage of the geometric flexibility of unstructured mesh using a realistic global topography including the Arctic Ocean.The CS are given a special focus by refining the unstructured grids,but they are embedded into global domain naturally.Furthermore,GOCTM not only successfully avoids the treatment of the open boundaries,but also optimizes the trade-off between computational cost and model accuracy.Meanwhile,GOCTM is driven by the astronomical tide-generating potential and the secondary tide-generating potential directly,together with the wind stress and heat flux.GOCTM succeeds in reproducing the global eight principal tidal harmonic constants.Particularly,the simulated tidal results in the CS are improved compared to some other regional models with the discrepancy of 3.9 cm for M 2 tide.This idea of GOCTM can also be referred for other regional ocean study.
基金supported by the National Key R&D Program of China (No. 2017YFC1404700) the National Natural Science Foundation of China (No. 41806010)+2 种基金 Laboratory for Regional Oceanography and Numerical Modeling,Qingdao National Laboratory for Marine Science and Technology (No. 2019A03) the Discipline Layout Project for Basic Research of Shenzhen Science and Technology Innovation Committee (No. 20170418) the Guangdong Special Fund Program for Marine Economy Development (No. GDME-2018E001)
文摘The wind-sea and swell climates in the China Seas are investigated by using the 27-yr Integrated Ocean Waves for Geophysical and other Applications(IOWAGA)hindcast data.A comparison is made between the significant wave height from the IOWAGA hindcasts and that from a jointly calibrated altimetry dataset,showing the good performance of the IOWAGA hindcasts in the China Seas.A simple but practical method of diagnosing whether the sea state is wind-sea-dominant or swell-dominant is proposed based on spectral partitioning.Different from the characteristics of wind-seas and swells in the open ocean,the wave fields in the enclosed seas such as the China Seas are predominated by wind-sea events in respect of both frequencies of occurrences and energy weights,due to the island sheltering and limited fetches.The energy weights of wind-seas in a given location is usually more significant than the occurrence probability of wind-sea-dominated events,as the wave energy is higher in the wind-sea events than in the swell events on average and extreme wave heights are mostly related to wind-seas.The most energetic swells in the China Seas(and other enclosed seas)are‘local swells’,having just propagated out of their generation areas.However,the swells coming from the West Pacific also play an important role in the wave climate of the China Seas,which can only be revealed by partitioning different swell systems in the wave spectra as the energy of them is significantly less than the‘local swells’.
基金This Work was partly supported by the Youth Science Foundation of Ocean University of Qingdao.
文摘Collinear analysis technique is widely used for determining sea surface variability with Geosat altimeter data from its Exact Repeat Mission (ERM). But most of the researches have been only on global scale or in oceans deeper than 2000 m In shallow shelf waters this method is hampered by the inaccuracy of ocean tide data supplied with Geosat Geophysical Data Records (GDRs). This work uses a modified collinear analysis technique characterized by simultaneous separation of mean sea level and ocean tide with the least squares method, to compute sea surface variability in the Northwest Pacific Ocean and eastern China Seas. The mean sea level map obtained contains not only bathymetric but also dynamic features such as amphidromes, indicating considerable improvement over previous works. Our sea surface variability maps show dearly the main current system, the well-known Zhejiang coastal upwelling, and a northern East China Sea meso-scale eddy in good agreement with satellite sea surface temperature (SST) bservation and historical in situ measurement. These all suggest that meaningful and reliable oceanographic results can still be achieved in shallow shelf waters from Geosat altimetry as long as proper data processing techniques are applied.
基金Project supported by the Foundation of the Chinese National Commission for Education
文摘The distribution of ostracods and benthonic foraminifers in the China sea area is briefly reviewed from the paleobio-geographic viewpoint in this paper. Three regions can be distinguished in the area on the basis of modern distribution data: Region I (the Huanghai Sea and the Bohai Sea) with cool and temperate forms, Region I (the East China Sea and the northern part of the South China Sea) with subtropical warm-water forms and Region Ⅲ (central and southern parts of the South China Sea) with larger foraminifers and other tropical warm-water forms. The occurrence of Nummulites-Discocyclira fauna in the Eocene deposits of the East China Sea indicates a northward extension of tropical zoogeographical region at the time, whereas the distribution pattern of the Miocene Nephrolepidina-Miogypsiua-Austrotrillina fauna in the South China Sea resembles that of the present larger-foraminiferal fauna. In the South China Sea and Taiwan, a warm-water fauna with Asterorotalia and Pseudorotalia first appeared in late Miocene and then flourished in the Pliocene. Its northward invasion into the Bohai Sea area during late Pleistocene may be related to changes in current system. Many of the endemic foraminiferal and ostracod genera and species ( Sinocytheridea etc. ) in recent coastal faunas probably have originated from the South China Sea, and their occurrence in Japan or Australia may be indicative of ties between these areas during glacial times.