The crust floats above the mantle, and the volume change of the mantle is the driving force of crustal movement. The increase in mantle volume leads to crustal extensional movement, resulting in continental crust rupt...The crust floats above the mantle, and the volume change of the mantle is the driving force of crustal movement. The increase in mantle volume leads to crustal extensional movement, resulting in continental crust rupture and oceanic crust expansion. The decrease in mantle volume leads to crustal compression movement, resulting in continental crust superposition, folding, and oceanic crust subduction. The factors that contribute to the increase in mantle volume include a change in material state, where solid material in the mantle melts into liquid material. The factors leading to a decrease in mantle volume include: oceanic crust uplift, crustal crystallization, volcanic eruptions, magma intrusion, and hydrothermal upwelling. The change in mantle volume dominates the evolution pattern of the crust. When the mantle volume increases unidirectionally, the crust only has horizontally crystallized continental crust. When the volume of the mantle changes in both directions, blocky layered oceanic crust is formed. The expansion and subduction of oceanic crust, as well as the stretching and compression of continental crust, are the supporting mechanisms for changes in Earth’s surface area caused by changes in mantle volume.展开更多
Recent space geodetic and gravimetric studies have given indications that the Earth’s radius is increasing at 0.1-0.4 mm yr-1 at present. Seismic studies have also shown that earthquakes alone could be causing the ra...Recent space geodetic and gravimetric studies have given indications that the Earth’s radius is increasing at 0.1-0.4 mm yr-1 at present. Seismic studies have also shown that earthquakes alone could be causing the radius to increase at 0.011-0.06 mm yr-1. Deep mantle plumes provide a geophysical context within which such radial expansion, if confirmed, could possibly be explained. Both theory and observation suggest that these rising plumes more readily penetrate the 670 km barrier than do subducting slabs moving in the opposite direction towards the core-mantle boundary. If so, there would be a net flow of mass from the deep lower mantle into the upper mantle. Due to the lower pressures in the upper mantle,the excess mass of plume materials reaching there would transform to minerals with lower densities than they had at the mantle base. An increase in the mantle volume and the Earth’s radius would therefore be implied. Using previously published data for the African superplume. it is estimated that this mechanism could cause the Earth’s radius to increase at rates of 0.02-0.3 mm yr-1, similar to the rates possibly indicated in the present studies. This mechanism could also explain the very large range in current estimates of mantle plume heat and volume fluxes. A possible energy source for this plumedriven mode of expansion is discussed.展开更多
Trace elements including REE (Rare Earth Elements) in fluid inclusions inlherzolite, olivine, orthopyroxene, and clinopyroxene have been determined by heating-decrepitationand ICP-MS (Element Type Inductively Coupled ...Trace elements including REE (Rare Earth Elements) in fluid inclusions inlherzolite, olivine, orthopyroxene, and clinopyroxene have been determined by heating-decrepitationand ICP-MS (Element Type Inductively Coupled Plasma-Mass Spectrometry) method. Normalized CO_2fluid/chondrite data show that mantle fluids are rich in REEs, especially LREEs (Light Rare EarthElements), several times or dozen times higher than mantle rocks and mantle minerals. There areclose relationships among the REE data of olivine, orthopyroxene, clinopyroxene and lherzolite.Compared to the data of chemical dissolution method, it is believed that REE data obtained fromheating-decrepitation and ICP-MS technique are contributed by CO_2 fluid inclusions. About 60percent (mass fraction) of tiny inclusions are observed not to be decrepitated above 1000 deg C, soREE data obtained are only contributed by decrepitated inclusions. Mantle fluids rich in LREE playan important role in mantle metasomatism, partial melting and mineralization.展开更多
The earth dynamic system is one of the key scientific questions on the earth science. The thermodynamic behavior and gravity force of the earth and the rheology nature of the mantle prove that mantle convection is the...The earth dynamic system is one of the key scientific questions on the earth science. The thermodynamic behavior and gravity force of the earth and the rheology nature of the mantle prove that mantle convection is the main power source leading the lithosphere to break and move. Yet the directivity of both the structures in the crust and plate movement reminds of the earth rotation. Here we demonstrate that the mantle convection and inertia force of the earth rotation affect each other, the former being the power source of lithosphere plate break and motion, and the latter determining the direction of the mantle convection and plate motion. The sense of plate motion depends on the mantle upwells, whose trends are controlled by the earth rotation. The geometric shapes of the plate boundaries can adjust the direction of plate movement.展开更多
The Purpose of the Work: The modern mantle and crust have a complex structure and, in addition, contain both thermal and material heterogeneities, as evidenced by the results of seismic and electromagnetic studies. Ch...The Purpose of the Work: The modern mantle and crust have a complex structure and, in addition, contain both thermal and material heterogeneities, as evidenced by the results of seismic and electromagnetic studies. Changes are also reflected by the change in the mineralogical and chemical composition of the matter. This structure was formed for the long geological history of the planet’s development and the process continues at the present time. The system remains unsteady. To understand the evolution of such dynamic structures, information is needed about the initial state of the system, in our case, about the state of the Earth at the final stage of its formation. It can be obtained only by the results of numerical modeling based on the results of the investigation of the evolution of isotope systems. Therefore, the purpose of the work is to identify the features of the formation of mineral deposits in the early crust and mantle. For this, it is necessary to obtain variants of the numerical solution of the problem of the formation of the planet. Solution Methods: An algorithm for solving a non-linear system of differential equations for solving a 3D boundary dynamic problem in the sphere of an increasing radius is developed. The numerical method of “through account” is used in the work. Results: Based on methods for solving boundary value problems for a system of differential equations with the use of new results of mineralogical and isotope studies of the oldest material samples, quantitative variants of the thermal evolution of the Earth, directly determining the formation of early metallogeny, are constructed. It is shown that the random distribution of particles and bodies of a protoplanetary cloud during the accumulation of the planet causes the formation of a random material and temperature composition of the growing crust and mantle, which ensured a special metallogeny of the cratons and their framing, which no longer repeated in the geological history of the planet. A special role in it was played by changes in the gravitational field during the growth of the planet and the angular velocity of the Earth’s rotation. Further Research: It is proposed to extend the results obtained to the conditions for taking into account the dynamics of the double Earth-Moon system.展开更多
AIM: To evaluate the endoscopic manifestations and prognoses of gastrointestinal (GI) mantle cell lymphoma (MCL). METHODS: A database search at the Department of Pathology of Okayama University Graduate School of Medi...AIM: To evaluate the endoscopic manifestations and prognoses of gastrointestinal (GI) mantle cell lymphoma (MCL). METHODS: A database search at the Department of Pathology of Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences revealed 57 MCL patients with GI involvement. Clinical records were available for 35 of the 57 patients from 21 institutions, and those 35 patients were enrolled in this study. We summarized the gross types of endoscopic features, event-free survival (EFS), and overall survival (OS) of those patients.RESULTS: Of the 35 patients, GI involvement in the esophagus, stomach, and duodenum was found in 2 (5.7%), 26 (74.3%), and 12 (34.3%) patients, respectively. Twenty-one of the 35 patients underwent colonoscopy; among them, GI involvement in the ileum, cecum, colon, and rectum was found in 10 (47.6%), 3 (14.3%), 12 (57.1%), and 10 (47.6%), respectively. Various lesions, such as superficial, protruded, fold thickening, or ulcerative, were found in the stomach, whereas multiple lymphomatous polyposis (MLP) was dominant from the duodenum to the rectum. Twelve patients were treated with a hyper-CVAD/MA regimen, and they had better OS (3-year rate, 88.3% vs 46.4%, P < 0.01) and better EFS (3-year rate, 66.7% vs 33.8%, P < 0.05) than the remaining 23 patients who were not treated with this regimen. CONCLUSION: MLP was a representative form of intestinal involvement, whereas a variety of lesions were found in the stomach. The hyper-CVAD/MA regimen may improve survival in these patients.展开更多
Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditi...Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditions are analogous to those found on the surface of Mars and in the atmosphere of Venus,making Earth’s near space a unique natural laboratory for astrobiological research.To address essential astrobiological questions,teams from the Chinese Academy of Sciences(CAS)have developed a scientific balloon platform,the CAS Balloon-Borne Astrobiology Platform(CAS-BAP),to study the effects of near space environmental conditions on the biology and survival strategies of representative organisms in this terrestrial analog.Here,we describe the versatile Biological Samples Exposure Payload(BIOSEP)loaded on the CAS-BAP with respect to its structure and function.The primary function of BIOSEP is to expose appropriate biological specimens to the harsh conditions of near space and subsequently return the exposed samples to laboratories for further analysis.Four successful flight missions in near space from 2019 to 2021 have demonstrated the high reliability and efficiency of the payload in communicating between hardware and software units,recording environmental data,exposing sample containers,protecting samples from external contamination,and recovering samples.Understanding the effects of Earth’s near space conditions on biological specimens will provide valuable insights into the survival strategies of organisms in extreme environments and the search for life beyond Earth.The development of BIOSEP and associated biological exposure experiments will enhance our understanding of the potential for life on Mars and the habitability of the atmospheric regions of other planets in the solar system and beyond.展开更多
Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is...Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.展开更多
Plate subduction drives both the internal convection and the surface geology of the solid Earth.Despite the rapid increase of computational power,it remains challenging for geodynamic models to reproduce the history o...Plate subduction drives both the internal convection and the surface geology of the solid Earth.Despite the rapid increase of computational power,it remains challenging for geodynamic models to reproduce the history of Earth-like subduction and associated mantle flow.Here,based on an adaptive approach of sequential data assimilation,we present a high-resolution global model since the mid-Mesozoic.This model incorporates the thermal structure and surface kinematics of tectonic plates based on a recent plate reconstruction to reproduce the observed subduction configuration and Earth-like convection.Introduction of temperature-and composition-dependent rheology allows for incorporation of many natural complexities,such as initiation of subduction zones,reversal of subduction polarity,and detailed plate-boundary dynamics.The resultant present-day slab geometry well matches Benioff zones and seismic tomography at depths < 1500 km,making it possible to hindcast past subduction dynamics and mantle flow.For example,the model produces a flat Farallon slab beneath North America during the Late Cretaceous to Early Cenozoic,a feature that has been geodynamically challenging to reproduce.This high-resolution model can also capture details of the 4-D evolution of slabs and the ambient mantle,such as temporally and spatially varying mantle flow associated with evolving slab geometry and buoyancy flux,as well as the formation of shallow slab tears due to subduction of young seafloors and the resulting complex mantle deformation.Such a geodynamic framework serves to further constrain uncertain plate reconstruction in the geological past,and to better understand the origin of enigmatic mantle seismic features.展开更多
The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around...The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.展开更多
A global cross-section of the Earth parallel to the tectonic equator(TE) path,the great circle representing the equator of net lithosphere rotation,shows a difference in shear wave velocities between the western and...A global cross-section of the Earth parallel to the tectonic equator(TE) path,the great circle representing the equator of net lithosphere rotation,shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins.The lowvelocity layer in the upper asthenosphere,at a depth range of 120 to 200 km,is assumed to represent the decoupling between the lithosphere and the underlying mantle.Along the TE-perturbed(TE-pert) path,a ubiquitous LVZ,about 1,000-km-wide and 100-km-thick,occurs in the asthenosphere.The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth.Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis(NDSHA),using realistic and duly validated synthetic time series,and generating a data bank of several thousands of seismograms that account for source,propagation,and site effects.Accordingly,with basic selforganized criticality concepts,NDSHA permits the integration of available information provided by the most updated seismological,geological,geophysical,and geotechnical databases for the site of interest,as well as advanced physical modeling techniques,to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures.Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory,and a case-study is discussed.In order to enable a reliable estimation of the ground motion response to an earthquake,three-dimensional velocity models have to be considered,resulting in a new,very efficient,analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.展开更多
Melt inclusions in kimberlitic minerals and diamonds indicate that chlorides are important constituents of mantle carbonatite melts.Besides,alkaline chlorides are important constituents of saline high-density fluids(H...Melt inclusions in kimberlitic minerals and diamonds indicate that chlorides are important constituents of mantle carbonatite melts.Besides,alkaline chlorides are important constituents of saline high-density fluids(HDFs)found in diamonds from kimberlites and placers around the world.Continuous compositional variations suggest that saline and carbonatitic HDFs could be genetically linked.However,the essence of this link remains unclear owing to the lack of data on phase relations in the chloridecarbonate systems under pressure.Here we studied subsolidus and melting phase relations in the system NaCl–CaCO_(3)–MgCO_(3)at 6 GPa and 1000–1600℃using a Kawai-type multianvil press.We found that at 1000℃,subsolidus assemblage consists of halite,magnesite,and aragonite.At higher temperatures,the stabilization of dolomite splits the subsolidus area into two partial ternary fields:halite+magnesite+dolomite and halite+dolomite+aragonite.The minimum on the liquidus surface corresponds to the halite-dolomite-aragonite ternary eutectic,situated at 1100℃.The eutectic melt has Ca#89 and contains 30 wt.%Na Cl(26 mol%2NaCl).The system has two ternary peritectics:halite+dolomite=magnesite+liquid located near the ternary eutectic and magnesite+dolomite=Mg-dolomite+liquid situated between 1300 and 1400℃.Although under dry conditions incipient melting yields carbonatedominated melt,the addition of water facilitates the fusion of Na Cl and expands the liquid field to Na Cl-rich compositions with up to 70 wt.%Na Cl.The obtained results favor the idea that hydrous saline melts/fluids(brines)found as inclusions in diamonds could be a lower temperature derivative of mantle carbonatite melts and disagree with the hypothesis on chloride melt generation owing to the chloridecarbonate liquid immiscibility since no such immiscibility was established.We also studied the interaction of the NaCl–CaCO_(3)–MgCO_(3)system with iron metal and found that carbonate reduction produces Cbearing species(Fe^(0),Fe-C melt,Fe_(3)C,Fe_(7)C_(3),C^(0))and wüstite containing Na_(2)O,CaO,and MgO.Besides,a carbonate chloride compound,Ca_(2)Cl_(2)CO_(3),was established among the reaction products.The interaction between Na Cl-bearing carbonate melt shifts its composition toward Mg-poor and Na Cl-rich.Given the above,an alternative hypothesis can be proposed,according to which the interaction of alkaline chloride-bearing carbonate melts formed in the subduction zones with the reduced mantle should be accompanied by diamond crystallization and shift the composition of the melt from carbonatitic to alkali-rich saline.展开更多
We describe a method to perform a constrained lithospheric-scale inversion of satellite gravity gradient data.The a priori constraints include:i)data covariance matrix;ii)prior model covariance matrix including a mode...We describe a method to perform a constrained lithospheric-scale inversion of satellite gravity gradient data.The a priori constraints include:i)data covariance matrix;ii)prior model covariance matrix including a model for spatial variability of mantle heterogeneity.展开更多
The core-mantle differentiation process is one of the most significant events in the Earth’s early history,which profoundly affects the Earth’s internal structure.According to the simple core-mantle differentiation ...The core-mantle differentiation process is one of the most significant events in the Earth’s early history,which profoundly affects the Earth’s internal structure.According to the simple core-mantle differentiation mechanism,elements such as iron and nickel should be extracted from silicate to form an iron-rich proto-core,and the residual silicate materials form the proto-mantle.However,the composition of the lower mantle and the core remains controversial,which largely affects the partition of elements,thus the referred differentiation process of the Earth.In recent years,many experimental studies on the partition coefficient of siderophile elements between metal and silicate under high-temperature and high-pressure conditions have put forward new ideas on the issues around Earth’s core-mantle differentiation.Meanwhile,some researchers suggested that the redox state of the Earth’s mantle changes during its formation and evolution,and many isotope geochemistry studies support that some enstatite chondrites have a common nebular precursor as the Earth.These new studies bring dispute on the Earth’s building materials,which dominates the core-mantle differentiation process and largely affects the partitioning behaviors of elements during the core-mantle differentiation.This chapter aims to review recent experimental studies on the siderophile element geochemistry and discussions on the Earth’s building blocks.展开更多
Compelling evidence indicates that the solid Earth consists of two physicochemically distinct zones separated radially in the middle of the lower mantle at∼1800 km depth.The inner zone is governed by pressure-induced...Compelling evidence indicates that the solid Earth consists of two physicochemically distinct zones separated radially in the middle of the lower mantle at∼1800 km depth.The inner zone is governed by pressure-induced physics and chemistry dramatically different from the conventional behavior in the outer zone.These differences generate large physical and chemical potentials between the two zones that provide fundamental driving forces for triggering major events in Earth’s history.One of the main chemical carriers between the two zones isH_(2)Oin hydrous minerals that subducts into the inner zone,releases hydrogen,and leaves oxygen to create superoxides and form oxygen-rich piles at the core–mantle boundary,resulting in localized net oxygen gain in the inner zone.Accumulation of oxygen-rich piles at the base of the mantle could eventually reach a supercritical level that triggers eruptions,injecting materials that cause chemical mantle convection,superplumes,large igneous provinces,extreme climate changes,atmospheric oxygen fluctuations,and mass extinctions.Interdisciplinary research will be the key for advancing a unified theory of the four-dimensional Earth system.展开更多
The precision of Earth's gravitational field from GRACE up to degree and order 120 was studied for different inter-satellite ranges using the improved energy conservation principle. Our simulated result shows that: ...The precision of Earth's gravitational field from GRACE up to degree and order 120 was studied for different inter-satellite ranges using the improved energy conservation principle. Our simulated result shows that: For long wavelength (L≤20) at degree 20, the cumulative geoid-height error gradually decreased with increasing range, from 0. 052 cm for 110 km to 1. 156 times and 1. 209 times as large for 220 km and 330 kin, respectively. For medium-wavelength ( 100 ≤ L ≤ 120) at degree 120, the cumulative geoid-height error de- creased from 13. 052 cm for 110 km, to 1. 327 times and 1. 970 times as large for the ranges of 220 km and 330 km, respectively; By adopting an optimal range of 220 ± 50 km, we can suppress considerably the loss of precision in the measurement of the Earth' s long-wavelength and medium-wavelength gravitational field.展开更多
文摘The crust floats above the mantle, and the volume change of the mantle is the driving force of crustal movement. The increase in mantle volume leads to crustal extensional movement, resulting in continental crust rupture and oceanic crust expansion. The decrease in mantle volume leads to crustal compression movement, resulting in continental crust superposition, folding, and oceanic crust subduction. The factors that contribute to the increase in mantle volume include a change in material state, where solid material in the mantle melts into liquid material. The factors leading to a decrease in mantle volume include: oceanic crust uplift, crustal crystallization, volcanic eruptions, magma intrusion, and hydrothermal upwelling. The change in mantle volume dominates the evolution pattern of the crust. When the mantle volume increases unidirectionally, the crust only has horizontally crystallized continental crust. When the volume of the mantle changes in both directions, blocky layered oceanic crust is formed. The expansion and subduction of oceanic crust, as well as the stretching and compression of continental crust, are the supporting mechanisms for changes in Earth’s surface area caused by changes in mantle volume.
文摘Recent space geodetic and gravimetric studies have given indications that the Earth’s radius is increasing at 0.1-0.4 mm yr-1 at present. Seismic studies have also shown that earthquakes alone could be causing the radius to increase at 0.011-0.06 mm yr-1. Deep mantle plumes provide a geophysical context within which such radial expansion, if confirmed, could possibly be explained. Both theory and observation suggest that these rising plumes more readily penetrate the 670 km barrier than do subducting slabs moving in the opposite direction towards the core-mantle boundary. If so, there would be a net flow of mass from the deep lower mantle into the upper mantle. Due to the lower pressures in the upper mantle,the excess mass of plume materials reaching there would transform to minerals with lower densities than they had at the mantle base. An increase in the mantle volume and the Earth’s radius would therefore be implied. Using previously published data for the African superplume. it is estimated that this mechanism could cause the Earth’s radius to increase at rates of 0.02-0.3 mm yr-1, similar to the rates possibly indicated in the present studies. This mechanism could also explain the very large range in current estimates of mantle plume heat and volume fluxes. A possible energy source for this plumedriven mode of expansion is discussed.
基金The work was financial support by National Natural Science Foundation of China (No.49972031).]
文摘Trace elements including REE (Rare Earth Elements) in fluid inclusions inlherzolite, olivine, orthopyroxene, and clinopyroxene have been determined by heating-decrepitationand ICP-MS (Element Type Inductively Coupled Plasma-Mass Spectrometry) method. Normalized CO_2fluid/chondrite data show that mantle fluids are rich in REEs, especially LREEs (Light Rare EarthElements), several times or dozen times higher than mantle rocks and mantle minerals. There areclose relationships among the REE data of olivine, orthopyroxene, clinopyroxene and lherzolite.Compared to the data of chemical dissolution method, it is believed that REE data obtained fromheating-decrepitation and ICP-MS technique are contributed by CO_2 fluid inclusions. About 60percent (mass fraction) of tiny inclusions are observed not to be decrepitated above 1000 deg C, soREE data obtained are only contributed by decrepitated inclusions. Mantle fluids rich in LREE playan important role in mantle metasomatism, partial melting and mineralization.
文摘The earth dynamic system is one of the key scientific questions on the earth science. The thermodynamic behavior and gravity force of the earth and the rheology nature of the mantle prove that mantle convection is the main power source leading the lithosphere to break and move. Yet the directivity of both the structures in the crust and plate movement reminds of the earth rotation. Here we demonstrate that the mantle convection and inertia force of the earth rotation affect each other, the former being the power source of lithosphere plate break and motion, and the latter determining the direction of the mantle convection and plate motion. The sense of plate motion depends on the mantle upwells, whose trends are controlled by the earth rotation. The geometric shapes of the plate boundaries can adjust the direction of plate movement.
文摘The Purpose of the Work: The modern mantle and crust have a complex structure and, in addition, contain both thermal and material heterogeneities, as evidenced by the results of seismic and electromagnetic studies. Changes are also reflected by the change in the mineralogical and chemical composition of the matter. This structure was formed for the long geological history of the planet’s development and the process continues at the present time. The system remains unsteady. To understand the evolution of such dynamic structures, information is needed about the initial state of the system, in our case, about the state of the Earth at the final stage of its formation. It can be obtained only by the results of numerical modeling based on the results of the investigation of the evolution of isotope systems. Therefore, the purpose of the work is to identify the features of the formation of mineral deposits in the early crust and mantle. For this, it is necessary to obtain variants of the numerical solution of the problem of the formation of the planet. Solution Methods: An algorithm for solving a non-linear system of differential equations for solving a 3D boundary dynamic problem in the sphere of an increasing radius is developed. The numerical method of “through account” is used in the work. Results: Based on methods for solving boundary value problems for a system of differential equations with the use of new results of mineralogical and isotope studies of the oldest material samples, quantitative variants of the thermal evolution of the Earth, directly determining the formation of early metallogeny, are constructed. It is shown that the random distribution of particles and bodies of a protoplanetary cloud during the accumulation of the planet causes the formation of a random material and temperature composition of the growing crust and mantle, which ensured a special metallogeny of the cratons and their framing, which no longer repeated in the geological history of the planet. A special role in it was played by changes in the gravitational field during the growth of the planet and the angular velocity of the Earth’s rotation. Further Research: It is proposed to extend the results obtained to the conditions for taking into account the dynamics of the double Earth-Moon system.
文摘AIM: To evaluate the endoscopic manifestations and prognoses of gastrointestinal (GI) mantle cell lymphoma (MCL). METHODS: A database search at the Department of Pathology of Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences revealed 57 MCL patients with GI involvement. Clinical records were available for 35 of the 57 patients from 21 institutions, and those 35 patients were enrolled in this study. We summarized the gross types of endoscopic features, event-free survival (EFS), and overall survival (OS) of those patients.RESULTS: Of the 35 patients, GI involvement in the esophagus, stomach, and duodenum was found in 2 (5.7%), 26 (74.3%), and 12 (34.3%) patients, respectively. Twenty-one of the 35 patients underwent colonoscopy; among them, GI involvement in the ileum, cecum, colon, and rectum was found in 10 (47.6%), 3 (14.3%), 12 (57.1%), and 10 (47.6%), respectively. Various lesions, such as superficial, protruded, fold thickening, or ulcerative, were found in the stomach, whereas multiple lymphomatous polyposis (MLP) was dominant from the duodenum to the rectum. Twelve patients were treated with a hyper-CVAD/MA regimen, and they had better OS (3-year rate, 88.3% vs 46.4%, P < 0.01) and better EFS (3-year rate, 66.7% vs 33.8%, P < 0.05) than the remaining 23 patients who were not treated with this regimen. CONCLUSION: MLP was a representative form of intestinal involvement, whereas a variety of lesions were found in the stomach. The hyper-CVAD/MA regimen may improve survival in these patients.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA17010505)
文摘Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditions are analogous to those found on the surface of Mars and in the atmosphere of Venus,making Earth’s near space a unique natural laboratory for astrobiological research.To address essential astrobiological questions,teams from the Chinese Academy of Sciences(CAS)have developed a scientific balloon platform,the CAS Balloon-Borne Astrobiology Platform(CAS-BAP),to study the effects of near space environmental conditions on the biology and survival strategies of representative organisms in this terrestrial analog.Here,we describe the versatile Biological Samples Exposure Payload(BIOSEP)loaded on the CAS-BAP with respect to its structure and function.The primary function of BIOSEP is to expose appropriate biological specimens to the harsh conditions of near space and subsequently return the exposed samples to laboratories for further analysis.Four successful flight missions in near space from 2019 to 2021 have demonstrated the high reliability and efficiency of the payload in communicating between hardware and software units,recording environmental data,exposing sample containers,protecting samples from external contamination,and recovering samples.Understanding the effects of Earth’s near space conditions on biological specimens will provide valuable insights into the survival strategies of organisms in extreme environments and the search for life beyond Earth.The development of BIOSEP and associated biological exposure experiments will enhance our understanding of the potential for life on Mars and the habitability of the atmospheric regions of other planets in the solar system and beyond.
文摘Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.
基金support from NSF grants EAR-1345135,1554554,1565640supercomputing allocation on Blue Waters through ACI-1516586
文摘Plate subduction drives both the internal convection and the surface geology of the solid Earth.Despite the rapid increase of computational power,it remains challenging for geodynamic models to reproduce the history of Earth-like subduction and associated mantle flow.Here,based on an adaptive approach of sequential data assimilation,we present a high-resolution global model since the mid-Mesozoic.This model incorporates the thermal structure and surface kinematics of tectonic plates based on a recent plate reconstruction to reproduce the observed subduction configuration and Earth-like convection.Introduction of temperature-and composition-dependent rheology allows for incorporation of many natural complexities,such as initiation of subduction zones,reversal of subduction polarity,and detailed plate-boundary dynamics.The resultant present-day slab geometry well matches Benioff zones and seismic tomography at depths < 1500 km,making it possible to hindcast past subduction dynamics and mantle flow.For example,the model produces a flat Farallon slab beneath North America during the Late Cretaceous to Early Cenozoic,a feature that has been geodynamically challenging to reproduce.This high-resolution model can also capture details of the 4-D evolution of slabs and the ambient mantle,such as temporally and spatially varying mantle flow associated with evolving slab geometry and buoyancy flux,as well as the formation of shallow slab tears due to subduction of young seafloors and the resulting complex mantle deformation.Such a geodynamic framework serves to further constrain uncertain plate reconstruction in the geological past,and to better understand the origin of enigmatic mantle seismic features.
文摘The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.
文摘A global cross-section of the Earth parallel to the tectonic equator(TE) path,the great circle representing the equator of net lithosphere rotation,shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins.The lowvelocity layer in the upper asthenosphere,at a depth range of 120 to 200 km,is assumed to represent the decoupling between the lithosphere and the underlying mantle.Along the TE-perturbed(TE-pert) path,a ubiquitous LVZ,about 1,000-km-wide and 100-km-thick,occurs in the asthenosphere.The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth.Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis(NDSHA),using realistic and duly validated synthetic time series,and generating a data bank of several thousands of seismograms that account for source,propagation,and site effects.Accordingly,with basic selforganized criticality concepts,NDSHA permits the integration of available information provided by the most updated seismological,geological,geophysical,and geotechnical databases for the site of interest,as well as advanced physical modeling techniques,to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures.Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory,and a case-study is discussed.In order to enable a reliable estimation of the ground motion response to an earthquake,three-dimensional velocity models have to be considered,resulting in a new,very efficient,analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.
基金financially supported by Russian Science Foundation (project No 21-17-00024)。
文摘Melt inclusions in kimberlitic minerals and diamonds indicate that chlorides are important constituents of mantle carbonatite melts.Besides,alkaline chlorides are important constituents of saline high-density fluids(HDFs)found in diamonds from kimberlites and placers around the world.Continuous compositional variations suggest that saline and carbonatitic HDFs could be genetically linked.However,the essence of this link remains unclear owing to the lack of data on phase relations in the chloridecarbonate systems under pressure.Here we studied subsolidus and melting phase relations in the system NaCl–CaCO_(3)–MgCO_(3)at 6 GPa and 1000–1600℃using a Kawai-type multianvil press.We found that at 1000℃,subsolidus assemblage consists of halite,magnesite,and aragonite.At higher temperatures,the stabilization of dolomite splits the subsolidus area into two partial ternary fields:halite+magnesite+dolomite and halite+dolomite+aragonite.The minimum on the liquidus surface corresponds to the halite-dolomite-aragonite ternary eutectic,situated at 1100℃.The eutectic melt has Ca#89 and contains 30 wt.%Na Cl(26 mol%2NaCl).The system has two ternary peritectics:halite+dolomite=magnesite+liquid located near the ternary eutectic and magnesite+dolomite=Mg-dolomite+liquid situated between 1300 and 1400℃.Although under dry conditions incipient melting yields carbonatedominated melt,the addition of water facilitates the fusion of Na Cl and expands the liquid field to Na Cl-rich compositions with up to 70 wt.%Na Cl.The obtained results favor the idea that hydrous saline melts/fluids(brines)found as inclusions in diamonds could be a lower temperature derivative of mantle carbonatite melts and disagree with the hypothesis on chloride melt generation owing to the chloridecarbonate liquid immiscibility since no such immiscibility was established.We also studied the interaction of the NaCl–CaCO_(3)–MgCO_(3)system with iron metal and found that carbonate reduction produces Cbearing species(Fe^(0),Fe-C melt,Fe_(3)C,Fe_(7)C_(3),C^(0))and wüstite containing Na_(2)O,CaO,and MgO.Besides,a carbonate chloride compound,Ca_(2)Cl_(2)CO_(3),was established among the reaction products.The interaction between Na Cl-bearing carbonate melt shifts its composition toward Mg-poor and Na Cl-rich.Given the above,an alternative hypothesis can be proposed,according to which the interaction of alkaline chloride-bearing carbonate melts formed in the subduction zones with the reduced mantle should be accompanied by diamond crystallization and shift the composition of the melt from carbonatitic to alkali-rich saline.
基金supported by the European Space Agency’s Support to Science Element program,project"3D Earth:A Living Dynamics Planet"performed at The Centre for Earth Evolution and Dynamics,University of Oslo,funded by the Research Council of Norway through its center of excellence funding scheme,project 223272IPG SB RAS Project AAAAA16-116122810045-9
文摘We describe a method to perform a constrained lithospheric-scale inversion of satellite gravity gradient data.The a priori constraints include:i)data covariance matrix;ii)prior model covariance matrix including a model for spatial variability of mantle heterogeneity.
基金financially supported by the National Natural Science Foundation of China(NSFC Nos.41773052 and 41973058)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB 41000000)+1 种基金the key research program of frontier sciences of Chinese Academy of Sciences(ZDBS-SSWJSC007-10)preresearch project on Civil Aerospace Technologies by CNSA(D020201)。
文摘The core-mantle differentiation process is one of the most significant events in the Earth’s early history,which profoundly affects the Earth’s internal structure.According to the simple core-mantle differentiation mechanism,elements such as iron and nickel should be extracted from silicate to form an iron-rich proto-core,and the residual silicate materials form the proto-mantle.However,the composition of the lower mantle and the core remains controversial,which largely affects the partition of elements,thus the referred differentiation process of the Earth.In recent years,many experimental studies on the partition coefficient of siderophile elements between metal and silicate under high-temperature and high-pressure conditions have put forward new ideas on the issues around Earth’s core-mantle differentiation.Meanwhile,some researchers suggested that the redox state of the Earth’s mantle changes during its formation and evolution,and many isotope geochemistry studies support that some enstatite chondrites have a common nebular precursor as the Earth.These new studies bring dispute on the Earth’s building materials,which dominates the core-mantle differentiation process and largely affects the partitioning behaviors of elements during the core-mantle differentiation.This chapter aims to review recent experimental studies on the siderophile element geochemistry and discussions on the Earth’s building blocks.
基金We thank Yu He,Qingyang Hu,Jin Liu,Duckyoung Kim,and Li Zhang for sharing preliminary information.W.L.Mao acknowledges support from NSF Geophysics Grant No.EAR 1446969H.-k.Mao acknowledges supports from NSF Geochemistry Grant No.EAR-1447438+1 种基金NSF Geophysics Grant No.EAR-1722515This work was also partially supported by the National Natural Science Foundation of China Grant No.U1530402 and U1930401.
文摘Compelling evidence indicates that the solid Earth consists of two physicochemically distinct zones separated radially in the middle of the lower mantle at∼1800 km depth.The inner zone is governed by pressure-induced physics and chemistry dramatically different from the conventional behavior in the outer zone.These differences generate large physical and chemical potentials between the two zones that provide fundamental driving forces for triggering major events in Earth’s history.One of the main chemical carriers between the two zones isH_(2)Oin hydrous minerals that subducts into the inner zone,releases hydrogen,and leaves oxygen to create superoxides and form oxygen-rich piles at the core–mantle boundary,resulting in localized net oxygen gain in the inner zone.Accumulation of oxygen-rich piles at the base of the mantle could eventually reach a supercritical level that triggers eruptions,injecting materials that cause chemical mantle convection,superplumes,large igneous provinces,extreme climate changes,atmospheric oxygen fluctuations,and mass extinctions.Interdisciplinary research will be the key for advancing a unified theory of the four-dimensional Earth system.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholar(KZCX2-EW-QN114)the National Natural Science Foundation of China(41004006,41131067,11173049)+5 种基金the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars(2011)the Open Research Fund Program of the Key Laboratory of Geo-Informatics of State Bureau of Surveying and Mapping(201031)the Open Research Fund Program of the Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences(2011-04)the Frontier Field Program of Knowledge Innovation of Institute of Geodesy and Geophysics of Chinese Academy of Sciencesthe Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLN1113)the Hubei Province Key Laboratory of Refractories and Ceramics Ministry-Province jointly-Constructed Cultivation Base for State key Laboratory(G201009)
文摘The precision of Earth's gravitational field from GRACE up to degree and order 120 was studied for different inter-satellite ranges using the improved energy conservation principle. Our simulated result shows that: For long wavelength (L≤20) at degree 20, the cumulative geoid-height error gradually decreased with increasing range, from 0. 052 cm for 110 km to 1. 156 times and 1. 209 times as large for 220 km and 330 kin, respectively. For medium-wavelength ( 100 ≤ L ≤ 120) at degree 120, the cumulative geoid-height error de- creased from 13. 052 cm for 110 km, to 1. 327 times and 1. 970 times as large for the ranges of 220 km and 330 km, respectively; By adopting an optimal range of 220 ± 50 km, we can suppress considerably the loss of precision in the measurement of the Earth' s long-wavelength and medium-wavelength gravitational field.