On March 14,2004,the Second Session of the 10th National People’s Congress of China adopted the fourth amendment to the Chinese Constitution,the most noticeable highlight of which is the addition of the paragraph“th...On March 14,2004,the Second Session of the 10th National People’s Congress of China adopted the fourth amendment to the Chinese Constitution,the most noticeable highlight of which is the addition of the paragraph“the state respects and protects human rights”as the third clause in Article 33 of Chapter II“Basic Rights and Obligations of Citizens”in the Constitution.The inclusion of the clause of human rights in the Constitution is considered an important milestone in the history of human rights development in the People’s Republic of China.The implementation of the human rights clause not only showcases the values of the Party and the state in respecting and protecting human rights,but also promotes the development of human rights,shapes the culture of human rights,and endows the rule of law with a rich humanistic spirit.Over the past 20 years,the publicity,research and practice of the human rights clause have made the Chi-nese people realize that human rights are not only a“great term”,but also a common value shared by mankind.Amid the once-in-a-century changes of the world,although the development of human rights is facing various challenges,the humanistic spirit contained in the hu-man rights clause has become the internal driving force for building consensus in the whole of society.Reinterpreting the significance and value of the human rights clause can help us conscientiously draw on the experience in the implementation of the clause over the past 20 years and contribute Chinese wisdom and experience to global human rights governance with a more open mind and inclusive attitude.展开更多
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o...Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.展开更多
Public urban greenery greatly contributes to the residential and tourist value of cities in the Gulf Region,but due to the hyper-arid climatic conditions,the cost of irrigation and plant maintenance is very high.Exist...Public urban greenery greatly contributes to the residential and tourist value of cities in the Gulf Region,but due to the hyper-arid climatic conditions,the cost of irrigation and plant maintenance is very high.Existing strategies to reduce the monetary and ecological costs involve the cultivation of native xerophytic plantations,and/or the use of soil improvers to increase water-and nutrient-holding capacity of the sandy soils.Various soil improvers based on mineral,organic,or synthetic materials have entered the United Arab Emirates(UAE)market in recent years,but there is considerable uncertainty about how they should best be used in combination with ornamental plant stands involving xerophytic native plants.The present study investigated the effect of soil amendment and deep pipe irrigation on perennial ornamental plant stands involving native plants(Tephrosia appolinea(Gel.)Link in combination with Aerva javanica(Burm.f.)Juss.ex Schult.)and native-exotic plants(T.appolinea in combination with Ruelia simplex C.Wright)either or not topsoil and subsoil amendment with bentonite and hydrophobic sand under the irrigation water supply of less than 50%of reference evapotranspiration(ET0).After one year of cultivation,T.appolinea and A.javanica(native vs.native)produced high biomass and exhibited high water use efficiency(WUE)as compared with T.appolinea and R.simplex(native vs.exotic)combination given that no significant differences were found under the soil amendment treatments.All stands thrived under irrigation water supply far below what is usually supplied to exotic ornamental stands in public parks of the Al Ain City,the UAE.However,subsoil amendment in combination with deep pipe irrigation reduced the occurrence of weeds and increased the overall plant rooting depth.Our results suggest that subsoil amendment and irrigation up to 60-80 cm depth can potentially control ephemeral weed infestation,which is a great challenge in various plant production systems of the Gulf Region.The results of the present study suggest that the impact of soil amendment on the WUE of exotic plants is marginal and might not be economically justified.Replacing exotic with native ornamental plant species seems to have a far greater water-saving potential than the amendment of the soil,while weeds can be suppressed in the absence of topsoil moisture.展开更多
In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing...In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing machine and a split Hopkinson pressure bar(SHPB), obtaining stress-strain responses at different temperatures and strain rates. The results revealed that, in comparison to other polymers, the gas obturator material exhibited inconspicuous strain softening and hardening effects;meanwhile, the mechanical response was more affected by the strain rate than by temperature. Subsequently, a succinct viscoelastic damage constitutive model was developed based on the ZWT model, including ten undetermined parameters, formulated with incorporating three parallel components to capture the viscoelastic response at high strain rate and further enhanced by integrating a three-parameter Weibull function to describe the damage. Compared to the ZWT model, the modified model could effectively describe the mechanical response behavior of the gas obturator material at high strain rates. This research laid a theoretical foundation for further investigation into the influence of chamber sealing issues on artillery firing.展开更多
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
The inclusion of the human rights clause in the Chi-nese Constitution is the core normative manifestation of the constitu-tionalization of human rights,and points to the relationship between international law and the ...The inclusion of the human rights clause in the Chi-nese Constitution is the core normative manifestation of the constitu-tionalization of human rights,and points to the relationship between international law and the Constitution in the sense of positive law.The inclusion of the human rights clauses in the Chinese Constitution itself is an inherent part of the development of China’s socialist constitution,and socialism has already contributed valuable concepts and practices of human rights protection to the modern world in its early stage.The constitutionalization of human rights protection does not necessarily lead to the superiority of international law over the constitutional order of a country,but rather to the convergence of international law and domestic law through the constitutional order.The relevant rules of international law will be effective only when they are transformed into domestic law through the Constitution and the human rights clause in the Constitution.Correspondingly,the domestic legal order is brought into line with the international legal order through the Con-stitution and its human rights clause.Behind the system of fundamen-tal rights in the constitutional order is the value foundation of the en-tire legal system.The advancement of foreign-related rule of law has brought new opportunities for China’s judicial practice to further pro-mote the protection of human rights.In the future,we should further integrate the human rights values embedded in socialism into China’s constitutional practice,enhance human rights protection around the country,and take a more active part in global human rights gover-nance.展开更多
In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization ...In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.展开更多
Highly entangled hydrogels exhibit excellent mechanical properties,including high toughness,high stretchability,and low hysteresis.By considering the evolution of randomly distributed entanglements within the polymer ...Highly entangled hydrogels exhibit excellent mechanical properties,including high toughness,high stretchability,and low hysteresis.By considering the evolution of randomly distributed entanglements within the polymer network upon mechanical stretches,we develop a constitutive theory to describe the large stretch behaviors of these hydrogels.In the theory,we utilize a representative volume element(RVE)in the shape of a cube,within which there exists an averaged chain segment along each edge and a mobile entanglement at each corner.By employing an explicit method,we decouple the elasticity of the hydrogels from the sliding motion of their entanglements,and derive the stress-stretch relations for these hydrogels.The present theoretical analysis is in agreement with experiment,and highlights the significant influence of the entanglement distribution within the hydrogels on their elasticity.We also implement the present developed constitutive theory into a commercial finite element software,and the subsequent simulations demonstrate that the exact distribution of entanglements strongly affects the mechanical behaviors of the structures of these hydrogels.Overall,the present theory provides valuable insights into the deformation mechanism of highly entangled hydrogels,and can aid in the design of these hydrogels with enhanced performance.展开更多
Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to inv...Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to investigate the response of rice cultivars to elevated air temperature (+1.5˚C higher than ambient) and soil amendments in regards to rice yield, yield scaled methane emissions and global warming potentials. The experimental findings revealed that replacement of inorganic fertilizers (20% - 40% of recommended NPKS) with Vermicompost, Azolla biofertilizer, enriched sugarcane pressmud, rice husk biochar and silicate fertilization increased rice yield 13.0% - 23.0%, and 11.0% - 19.0% during wet aman and dry boro season, respectively. However, seasonal cumulative CH4 fluxes were decreased by 9.0% - 25.0% and 5.0% - 19.0% during rainfed wet aman and irrigated dry boro rice cultivation, respectively with selected soil amendments. The maximum reduction in seasonal cumulative CH4 flux (19.0% - 25.0%) was recorded with silicate fertilization and azolla biofertilizer amendments (9.0% - 13.0%), whereas maximum grain yield increment 10.0 % - 14.0% was found with Vermicompost and Sugarcane pressmud amendments compared to chemical fertilization (100% NPKS) treated soils at ambient air temperature. However, rice grain yield decreased drastically 43.0% - 50.0% at elevated air temperature (3˚C higher than ambient air temperature), eventhough accelerated the total cumulative CH4 flux as well as GWPs in all treatments. Maximum seasonal mean GWPs were calculated at 391.0 kg CO2 eq·ha−1 in rice husk biochar followed by sugarcane pressmud (mean GWP 387.0 kg CO2 eq·ha−1), while least GWPs were calculated at 285 - 305 kg CO2 eq·ha−1 with silicate fertilizer and Azolla biofertilizer amendments. Rice cultivar BRRI dhan 87 revealed comparatively higher seasonal cumulative CH4 fluxes, yield scaled CH4 flux and GWPs than BRRI dhan 71 during wet aman rice growing season;while BRRI dhan 89 showed higher cumulative CH4 flux and GWPs than BINA dhan 10 during irrigated boro rice cultivation. Conclusively, inorganic fertilizers may be partially (20% - 40% of the recommended NPKS) replaced with Vermicompost, azolla biofertilizer, silicate fertilizer and enriched sugarcane pressmud compost for sustainable rice production and decreasing GWPs under elevated air temperature condition.展开更多
Objective:To reveal the distribution characteristics and demographic factors of traditional Chinese medicine(TCM)constitution among elderly individuals in China.Methods: Elderly individuals from seven regions in China...Objective:To reveal the distribution characteristics and demographic factors of traditional Chinese medicine(TCM)constitution among elderly individuals in China.Methods: Elderly individuals from seven regions in China were selected as samples in this study using a multistage cluster random sampling method.The basic information questionnaire and Constitution in Chinese Medicine Questionnaire(Elderly Edition)were used.Descriptive statistical analysis,chi-squared tests,and binary logistic regression analysis were used.Results: The single balanced constitution(BC)accounted for 23.9%.The results of the major TCM constitution types showed that BC(43.2%)accounted for the largest proportion and unbalanced constitutions ranged from 0.9%to 15.7%.East China region(odds ratio[OR]=2.097;95%confidence interval[CI],1.912 to 2.301),married status(OR=1.341;95%CI,1.235 to 1.457),and managers(OR=1.254;95%CI,1.044 to 1.505)were significantly associated with BC.Age>70 years was associated with qi-deficiency constitution and blood stasis constitution(BSC).Female sex was significantly associated with yang-deficiency constitution(OR=1.646;95%CI,1.52 to 1.782).Southwest region was significantly associated with phlegm-dampness constitution(OR=1.809;95%CI,1.569 to 2.086).North China region was significantly associated with inherited special constitution(OR=2.521;95%CI,1.569 to 4.05).South China region(OR=2.741;95%CI,1.997 to 1.3.763),Central China region(OR=8.889;95%CI,6.676 to 11.835),senior middle school education(OR=2.442;95%CI,1.932 to 3.088),and managers(OR=1.804;95%CI,1.21 to 2.69)were significantly associated with BSC.Conclusions: This study defined the distribution characteristics and demographic factors of TCM constitution in the elderly population.Adjusting and improving unbalanced constitutions,which are correlated with diseases,can help promote healthy aging through the scientific management of these demographic factors.展开更多
This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total str...This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite.展开更多
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ...The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.展开更多
To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep character...To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.展开更多
Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with co...Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with complex microstructural evolution during creep tests,bring great challenges in understanding and predicting creep behaviors.In this study,we proposed to predict the creep properties and reveal the creep mechanisms of Mg-Gd-Zn based alloys by machine learning.On the one hand,the minimum creep rates were effectively predicted by using a support vector regression model.The complex and nonmonotonic effects of test temperature,test stress,alloying elements,and heat treatment conditions on the creep properties were revealed.On the other hand,the creep stress exponents and creep activation energies were calculated by machine learning to analyze the variation of creep mechanisms,based on which the constitutive equations of Mg-Gd-Zn based alloys were obtained.This study introduces an efficient method to comprehend creep behaviors through machine learning,offering valuable insights for the future design and selection of Mg alloys.展开更多
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c...Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.展开更多
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ...Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.展开更多
According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheolog...According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheological behaviors were predicted.The model exhibited relatively serious prediction distortion in the low-temperature and high-strain rate parameter interval,and its accuracy was still unsatisfactory even after modification by a correction operator considering the coupling of temperature and strain rate.The microstructure characterization and statistical analysis showed that a large number of twinning occurred in the parameter intervals with prediction deviation.The occurrence of twinning complicated the local internal stress distribution by drastically changing the crystal orientation and led to significant fluctuations in the macroscopic strain-stress and hardening curves relative to the rheological processes dominated by the dislocation and softening mechanisms,making the logarithm of the strain rate and stress deviate from the linear relationship.This twinning phenomenon was greatly influenced by the temperature and strain rate.Herein,the influence mechanism on twinning behavior was analyzed from the perspective of the interaction of dislocation and twinning.展开更多
A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a...A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings.展开更多
Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economi...Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economical,and robust tunnel reinforcement techniques.This paper explores fiber reinforced polymer(FRP)and steel fiber reinforced concrete(SFRC)technologies,which have emerged as viable solutions for enhancing tunnel structures.FRP is celebrated for its lightweight and high-strength attributes,effectively augmenting load-bearing capacity and seismic resistance,while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments.Nonetheless,current research predominantly focuses on experimental analysis,lacking comprehensive theoretical models.To bridge this gap,the cohesive zone model(CZM),which utilizes cohesive elements to characterize the potential fracture surfaces of concrete/SFRC,the rebar-concrete interface,and the FRP-concrete interface,was employed.A modeling approach was subsequently proposed to construct a tunnel segment model reinforced with either SFRC or FRP.Moreover,the corresponding mixed-mode constitutive models,considering interfacial friction,were integrated into the proposed model.Experimental validation and numerical simulations corroborated the accuracy of the proposed model.Additionally,this study examined the reinforcement design of tunnel segments.Through a numerical evaluation,the effectiveness of innovative reinforcement schemes,such as substituting concrete with SFRC and externally bonding FRP sheets,was assessed utilizing a case study from the Fuzhou Metro Shield Tunnel Construction Project.展开更多
A greenhouse experiment was conducted involving intact fragipan soil cores of 50 cm thickness after removing the topsoil horizons. The cores were maintained in moist condition throughout the experiment and received se...A greenhouse experiment was conducted involving intact fragipan soil cores of 50 cm thickness after removing the topsoil horizons. The cores were maintained in moist condition throughout the experiment and received several treatments with various amendments for different periods ranging from 9 to 17 months. The amendments included annual ryegrass or Festulolium residues, powder limestone and various humate compounds alone or in combination with the grass residues. The results suggested a significant effect of ryegrass and Festulolium in reducing penetration resistance into the top 10 cm of the fragipan within 9 - 17 months, particularly when used in combination with certain humate materials such as Leonardite. Apparently, this is the result of the release of certain soluble organic compounds from the plant residues or the humate amendments that increase the solubility of Si and Al associated with the fragipan brittleness, thus decreasing the density of the compacted fragipan material.展开更多
文摘On March 14,2004,the Second Session of the 10th National People’s Congress of China adopted the fourth amendment to the Chinese Constitution,the most noticeable highlight of which is the addition of the paragraph“the state respects and protects human rights”as the third clause in Article 33 of Chapter II“Basic Rights and Obligations of Citizens”in the Constitution.The inclusion of the clause of human rights in the Constitution is considered an important milestone in the history of human rights development in the People’s Republic of China.The implementation of the human rights clause not only showcases the values of the Party and the state in respecting and protecting human rights,but also promotes the development of human rights,shapes the culture of human rights,and endows the rule of law with a rich humanistic spirit.Over the past 20 years,the publicity,research and practice of the human rights clause have made the Chi-nese people realize that human rights are not only a“great term”,but also a common value shared by mankind.Amid the once-in-a-century changes of the world,although the development of human rights is facing various challenges,the humanistic spirit contained in the hu-man rights clause has become the internal driving force for building consensus in the whole of society.Reinterpreting the significance and value of the human rights clause can help us conscientiously draw on the experience in the implementation of the clause over the past 20 years and contribute Chinese wisdom and experience to global human rights governance with a more open mind and inclusive attitude.
基金sponsored by the National Key Research and Development Program of China(Grant No.2020YFC1808102).
文摘Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.
基金partly funded by the Al Ain MunicipalityNational Water and Energy Center, United Arab Emirates University。
文摘Public urban greenery greatly contributes to the residential and tourist value of cities in the Gulf Region,but due to the hyper-arid climatic conditions,the cost of irrigation and plant maintenance is very high.Existing strategies to reduce the monetary and ecological costs involve the cultivation of native xerophytic plantations,and/or the use of soil improvers to increase water-and nutrient-holding capacity of the sandy soils.Various soil improvers based on mineral,organic,or synthetic materials have entered the United Arab Emirates(UAE)market in recent years,but there is considerable uncertainty about how they should best be used in combination with ornamental plant stands involving xerophytic native plants.The present study investigated the effect of soil amendment and deep pipe irrigation on perennial ornamental plant stands involving native plants(Tephrosia appolinea(Gel.)Link in combination with Aerva javanica(Burm.f.)Juss.ex Schult.)and native-exotic plants(T.appolinea in combination with Ruelia simplex C.Wright)either or not topsoil and subsoil amendment with bentonite and hydrophobic sand under the irrigation water supply of less than 50%of reference evapotranspiration(ET0).After one year of cultivation,T.appolinea and A.javanica(native vs.native)produced high biomass and exhibited high water use efficiency(WUE)as compared with T.appolinea and R.simplex(native vs.exotic)combination given that no significant differences were found under the soil amendment treatments.All stands thrived under irrigation water supply far below what is usually supplied to exotic ornamental stands in public parks of the Al Ain City,the UAE.However,subsoil amendment in combination with deep pipe irrigation reduced the occurrence of weeds and increased the overall plant rooting depth.Our results suggest that subsoil amendment and irrigation up to 60-80 cm depth can potentially control ephemeral weed infestation,which is a great challenge in various plant production systems of the Gulf Region.The results of the present study suggest that the impact of soil amendment on the WUE of exotic plants is marginal and might not be economically justified.Replacing exotic with native ornamental plant species seems to have a far greater water-saving potential than the amendment of the soil,while weeds can be suppressed in the absence of topsoil moisture.
基金National Natural Science Foundation of China (Grant No. U2141246)。
文摘In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing machine and a split Hopkinson pressure bar(SHPB), obtaining stress-strain responses at different temperatures and strain rates. The results revealed that, in comparison to other polymers, the gas obturator material exhibited inconspicuous strain softening and hardening effects;meanwhile, the mechanical response was more affected by the strain rate than by temperature. Subsequently, a succinct viscoelastic damage constitutive model was developed based on the ZWT model, including ten undetermined parameters, formulated with incorporating three parallel components to capture the viscoelastic response at high strain rate and further enhanced by integrating a three-parameter Weibull function to describe the damage. Compared to the ZWT model, the modified model could effectively describe the mechanical response behavior of the gas obturator material at high strain rates. This research laid a theoretical foundation for further investigation into the influence of chamber sealing issues on artillery firing.
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
文摘The inclusion of the human rights clause in the Chi-nese Constitution is the core normative manifestation of the constitu-tionalization of human rights,and points to the relationship between international law and the Constitution in the sense of positive law.The inclusion of the human rights clauses in the Chinese Constitution itself is an inherent part of the development of China’s socialist constitution,and socialism has already contributed valuable concepts and practices of human rights protection to the modern world in its early stage.The constitutionalization of human rights protection does not necessarily lead to the superiority of international law over the constitutional order of a country,but rather to the convergence of international law and domestic law through the constitutional order.The relevant rules of international law will be effective only when they are transformed into domestic law through the Constitution and the human rights clause in the Constitution.Correspondingly,the domestic legal order is brought into line with the international legal order through the Con-stitution and its human rights clause.Behind the system of fundamen-tal rights in the constitutional order is the value foundation of the en-tire legal system.The advancement of foreign-related rule of law has brought new opportunities for China’s judicial practice to further pro-mote the protection of human rights.In the future,we should further integrate the human rights values embedded in socialism into China’s constitutional practice,enhance human rights protection around the country,and take a more active part in global human rights gover-nance.
文摘In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.
基金Project supported by the Key Research Project of Zhejiang Laboratory (No.K2022NB0AC03)the National Natural Science Foundation of China (No.11872334)the National Natural Science Foundation of Zhejiang Province of China (No.LZ23A020004)。
文摘Highly entangled hydrogels exhibit excellent mechanical properties,including high toughness,high stretchability,and low hysteresis.By considering the evolution of randomly distributed entanglements within the polymer network upon mechanical stretches,we develop a constitutive theory to describe the large stretch behaviors of these hydrogels.In the theory,we utilize a representative volume element(RVE)in the shape of a cube,within which there exists an averaged chain segment along each edge and a mobile entanglement at each corner.By employing an explicit method,we decouple the elasticity of the hydrogels from the sliding motion of their entanglements,and derive the stress-stretch relations for these hydrogels.The present theoretical analysis is in agreement with experiment,and highlights the significant influence of the entanglement distribution within the hydrogels on their elasticity.We also implement the present developed constitutive theory into a commercial finite element software,and the subsequent simulations demonstrate that the exact distribution of entanglements strongly affects the mechanical behaviors of the structures of these hydrogels.Overall,the present theory provides valuable insights into the deformation mechanism of highly entangled hydrogels,and can aid in the design of these hydrogels with enhanced performance.
文摘Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to investigate the response of rice cultivars to elevated air temperature (+1.5˚C higher than ambient) and soil amendments in regards to rice yield, yield scaled methane emissions and global warming potentials. The experimental findings revealed that replacement of inorganic fertilizers (20% - 40% of recommended NPKS) with Vermicompost, Azolla biofertilizer, enriched sugarcane pressmud, rice husk biochar and silicate fertilization increased rice yield 13.0% - 23.0%, and 11.0% - 19.0% during wet aman and dry boro season, respectively. However, seasonal cumulative CH4 fluxes were decreased by 9.0% - 25.0% and 5.0% - 19.0% during rainfed wet aman and irrigated dry boro rice cultivation, respectively with selected soil amendments. The maximum reduction in seasonal cumulative CH4 flux (19.0% - 25.0%) was recorded with silicate fertilization and azolla biofertilizer amendments (9.0% - 13.0%), whereas maximum grain yield increment 10.0 % - 14.0% was found with Vermicompost and Sugarcane pressmud amendments compared to chemical fertilization (100% NPKS) treated soils at ambient air temperature. However, rice grain yield decreased drastically 43.0% - 50.0% at elevated air temperature (3˚C higher than ambient air temperature), eventhough accelerated the total cumulative CH4 flux as well as GWPs in all treatments. Maximum seasonal mean GWPs were calculated at 391.0 kg CO2 eq·ha−1 in rice husk biochar followed by sugarcane pressmud (mean GWP 387.0 kg CO2 eq·ha−1), while least GWPs were calculated at 285 - 305 kg CO2 eq·ha−1 with silicate fertilizer and Azolla biofertilizer amendments. Rice cultivar BRRI dhan 87 revealed comparatively higher seasonal cumulative CH4 fluxes, yield scaled CH4 flux and GWPs than BRRI dhan 71 during wet aman rice growing season;while BRRI dhan 89 showed higher cumulative CH4 flux and GWPs than BINA dhan 10 during irrigated boro rice cultivation. Conclusively, inorganic fertilizers may be partially (20% - 40% of the recommended NPKS) replaced with Vermicompost, azolla biofertilizer, silicate fertilizer and enriched sugarcane pressmud compost for sustainable rice production and decreasing GWPs under elevated air temperature condition.
基金supported by the National Key R&D Program of China(2020YFC2003102).
文摘Objective:To reveal the distribution characteristics and demographic factors of traditional Chinese medicine(TCM)constitution among elderly individuals in China.Methods: Elderly individuals from seven regions in China were selected as samples in this study using a multistage cluster random sampling method.The basic information questionnaire and Constitution in Chinese Medicine Questionnaire(Elderly Edition)were used.Descriptive statistical analysis,chi-squared tests,and binary logistic regression analysis were used.Results: The single balanced constitution(BC)accounted for 23.9%.The results of the major TCM constitution types showed that BC(43.2%)accounted for the largest proportion and unbalanced constitutions ranged from 0.9%to 15.7%.East China region(odds ratio[OR]=2.097;95%confidence interval[CI],1.912 to 2.301),married status(OR=1.341;95%CI,1.235 to 1.457),and managers(OR=1.254;95%CI,1.044 to 1.505)were significantly associated with BC.Age>70 years was associated with qi-deficiency constitution and blood stasis constitution(BSC).Female sex was significantly associated with yang-deficiency constitution(OR=1.646;95%CI,1.52 to 1.782).Southwest region was significantly associated with phlegm-dampness constitution(OR=1.809;95%CI,1.569 to 2.086).North China region was significantly associated with inherited special constitution(OR=2.521;95%CI,1.569 to 4.05).South China region(OR=2.741;95%CI,1.997 to 1.3.763),Central China region(OR=8.889;95%CI,6.676 to 11.835),senior middle school education(OR=2.442;95%CI,1.932 to 3.088),and managers(OR=1.804;95%CI,1.21 to 2.69)were significantly associated with BSC.Conclusions: This study defined the distribution characteristics and demographic factors of TCM constitution in the elderly population.Adjusting and improving unbalanced constitutions,which are correlated with diseases,can help promote healthy aging through the scientific management of these demographic factors.
基金financially supported by the National Natural Science Foundation of China(Grant No.52074269).
文摘This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite.
基金supported by the National Natural Science Foundation of China(Nos.52204092 and 52274203).
文摘The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.
基金financial support from the National Natural Science Foundation of China(41902272)Gansu Province Basic Research Innovation Group Project(21JR7RA347).
文摘To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.
基金supported by the National Science and Technology Major Project(Grant number J2019-VI-0004-0118)the National Natural Science Foundation of China(Grant number 51771152)+2 种基金the National Key R&D Program of China(Grant number 2018YFB1106800)supported by the Brain Pool Program through the National Research Foundation of Korea(NRF)(Grant No.RS-2023-00304296)supported by the Brain Pool Program through National Research Foundation of Korea(NRF)(Grant No.RS-2023-00222130).
文摘Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with complex microstructural evolution during creep tests,bring great challenges in understanding and predicting creep behaviors.In this study,we proposed to predict the creep properties and reveal the creep mechanisms of Mg-Gd-Zn based alloys by machine learning.On the one hand,the minimum creep rates were effectively predicted by using a support vector regression model.The complex and nonmonotonic effects of test temperature,test stress,alloying elements,and heat treatment conditions on the creep properties were revealed.On the other hand,the creep stress exponents and creep activation energies were calculated by machine learning to analyze the variation of creep mechanisms,based on which the constitutive equations of Mg-Gd-Zn based alloys were obtained.This study introduces an efficient method to comprehend creep behaviors through machine learning,offering valuable insights for the future design and selection of Mg alloys.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.42272310).
文摘Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.
基金This work presented in this paper was funded by the National Natural Science Foundation of China(Grant Nos.51478031 and 51278046)Shenzhen Science and Technology Innovation Fund(Grant No.FA24405041).The authors are grateful to the editor and reviewers for discerning comments on this paper.
文摘Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.
基金support of the Key Research and Development Program of Shandong Province of China(grant no.2021ZLGX01)Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project),China(grant no.2021CXGC010206).
文摘According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheological behaviors were predicted.The model exhibited relatively serious prediction distortion in the low-temperature and high-strain rate parameter interval,and its accuracy was still unsatisfactory even after modification by a correction operator considering the coupling of temperature and strain rate.The microstructure characterization and statistical analysis showed that a large number of twinning occurred in the parameter intervals with prediction deviation.The occurrence of twinning complicated the local internal stress distribution by drastically changing the crystal orientation and led to significant fluctuations in the macroscopic strain-stress and hardening curves relative to the rheological processes dominated by the dislocation and softening mechanisms,making the logarithm of the strain rate and stress deviate from the linear relationship.This twinning phenomenon was greatly influenced by the temperature and strain rate.Herein,the influence mechanism on twinning behavior was analyzed from the perspective of the interaction of dislocation and twinning.
基金the financial support from the National Key Research and Development Program of China(Grant No.2017YFC1501003).
文摘A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings.
基金funded by the Scientific research startup Foundation of Fujian University of Technology(GY-Z21067 and GY-Z21026).
文摘Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economical,and robust tunnel reinforcement techniques.This paper explores fiber reinforced polymer(FRP)and steel fiber reinforced concrete(SFRC)technologies,which have emerged as viable solutions for enhancing tunnel structures.FRP is celebrated for its lightweight and high-strength attributes,effectively augmenting load-bearing capacity and seismic resistance,while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments.Nonetheless,current research predominantly focuses on experimental analysis,lacking comprehensive theoretical models.To bridge this gap,the cohesive zone model(CZM),which utilizes cohesive elements to characterize the potential fracture surfaces of concrete/SFRC,the rebar-concrete interface,and the FRP-concrete interface,was employed.A modeling approach was subsequently proposed to construct a tunnel segment model reinforced with either SFRC or FRP.Moreover,the corresponding mixed-mode constitutive models,considering interfacial friction,were integrated into the proposed model.Experimental validation and numerical simulations corroborated the accuracy of the proposed model.Additionally,this study examined the reinforcement design of tunnel segments.Through a numerical evaluation,the effectiveness of innovative reinforcement schemes,such as substituting concrete with SFRC and externally bonding FRP sheets,was assessed utilizing a case study from the Fuzhou Metro Shield Tunnel Construction Project.
文摘A greenhouse experiment was conducted involving intact fragipan soil cores of 50 cm thickness after removing the topsoil horizons. The cores were maintained in moist condition throughout the experiment and received several treatments with various amendments for different periods ranging from 9 to 17 months. The amendments included annual ryegrass or Festulolium residues, powder limestone and various humate compounds alone or in combination with the grass residues. The results suggested a significant effect of ryegrass and Festulolium in reducing penetration resistance into the top 10 cm of the fragipan within 9 - 17 months, particularly when used in combination with certain humate materials such as Leonardite. Apparently, this is the result of the release of certain soluble organic compounds from the plant residues or the humate amendments that increase the solubility of Si and Al associated with the fragipan brittleness, thus decreasing the density of the compacted fragipan material.