Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacifi...Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Three groups of variables were considered in the standardization: spatial variables (longitude and latitude), temporal variables (year and month) and environmental variables, including sea surface temperature (SST), sea surface salinity (SSS) and sea level height (SLH). CPUE was treated as the dependent variable and its error distribution was assumed to be log-normal in each model. The model selections of GLM and GAM were based on the finite sample-corrected Akaike information criterion (AICC) and pseudo-coefficient (Pcf) combined P-value, respectively. Both GAM and GLM analysis showed that the month was the most important variable affecting CPUE and could explain 21.3% of variability in CPUE while other variables only explained 8.66%. The interaction of spatial and temporal variables weakly influenced the CPUE. Moreover, spatio-temporal factors may be more important in influencing the CPUE of this squid than environmental variables. The standardized and nominal CPUEs were similar and had the same trends in spatio-temporal distribution, but the standardized CPUE values tended to be smaller than the nominal CPUE. The CPUE tended to have much higher monthly variation than annual variations and their values increased with month. The CPUE became higher with increasing latitude-high CPUE usually occurred in 145°E-148°E and 149°E-162°E. The CPUE was higher when SST was 14-21℃ and the SLH from -22 cm to -18 cm. In this study, GAM tended to be more suitable than GLM in analysis of CPUE.展开更多
The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the...The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model(GLM) and generalized additive model(GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance(catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature(SST), mixed layer depth(MLD), and the interaction term(SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40?N and 44?N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20℃ and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995–2002 and high during 2003–2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.展开更多
While large language models(LLMs)have made significant strides in natural language processing(NLP),they continue to face challenges in adequately addressing the intricacies of the Chinese language in certain scenarios...While large language models(LLMs)have made significant strides in natural language processing(NLP),they continue to face challenges in adequately addressing the intricacies of the Chinese language in certain scenarios.We propose a framework called Six-Writings multimodal processing(SWMP)to enable direct integration of Chinese NLP(CNLP)with morphological and semantic elements.The first part of SWMP,known as Six-Writings pictophonetic coding(SWPC),is introduced with a suitable level of granularity for radicals and components,enabling effective representation of Chinese characters and words.We conduct several experimental scenarios,including the following:(1)We establish an experimental database consisting of images and SWPC for Chinese characters,enabling dual-mode processing and matrix generation for CNLP.(2)We characterize various generative modes of Chinese words,such as thousands of Chinese idioms,used as question-and-answer(Q&A)prompt functions,facilitating analogies by SWPC.The experiments achieve 100%accuracy in answering all questions in the Chinese morphological data set(CA8-Mor-10177).(3)A fine-tuning mechanism is proposed to refine word embedding results using SWPC,resulting in an average relative error of≤25%for 39.37%of the questions in the Chinese wOrd Similarity data set(COS960).The results demonstrate that SWMP/SWPC methods effectively capture the distinctive features of Chinese and offer a promising mechanism to enhance CNLP with better efficiency.展开更多
基金Supported by the Program for New Century Excellent Talents in University (No.NCET-06-0437)the National High Technology Research and Development Program of China (863 Program) (No.2007AA092201+2 种基金2007AA092202)Shanghai Leading Academic Discipline Project (No.S30702)Doctorship Fund of Shanghai Ocean University (No.06-326)
文摘Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Three groups of variables were considered in the standardization: spatial variables (longitude and latitude), temporal variables (year and month) and environmental variables, including sea surface temperature (SST), sea surface salinity (SSS) and sea level height (SLH). CPUE was treated as the dependent variable and its error distribution was assumed to be log-normal in each model. The model selections of GLM and GAM were based on the finite sample-corrected Akaike information criterion (AICC) and pseudo-coefficient (Pcf) combined P-value, respectively. Both GAM and GLM analysis showed that the month was the most important variable affecting CPUE and could explain 21.3% of variability in CPUE while other variables only explained 8.66%. The interaction of spatial and temporal variables weakly influenced the CPUE. Moreover, spatio-temporal factors may be more important in influencing the CPUE of this squid than environmental variables. The standardized and nominal CPUEs were similar and had the same trends in spatio-temporal distribution, but the standardized CPUE values tended to be smaller than the nominal CPUE. The CPUE tended to have much higher monthly variation than annual variations and their values increased with month. The CPUE became higher with increasing latitude-high CPUE usually occurred in 145°E-148°E and 149°E-162°E. The CPUE was higher when SST was 14-21℃ and the SLH from -22 cm to -18 cm. In this study, GAM tended to be more suitable than GLM in analysis of CPUE.
基金financially supported by the National HighTech R&D Program(863 Program)of China(2012AA 092303)the Project of Shanghai Science and Technology Innovation(12231203900)+3 种基金the Industrialization Program of National Development and Reform Commission(2159999)the National Key Technologies R&D Program of China(2013BAD13B00)the Shanghai Universities First-Class Disciplines Project(Fisheries A)the Funding Program for Outstanding Dissertations in Shanghai Ocean University
文摘The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model(GLM) and generalized additive model(GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance(catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature(SST), mixed layer depth(MLD), and the interaction term(SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40?N and 44?N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20℃ and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995–2002 and high during 2003–2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.
基金Project partially supported by the Brazilian National Council for Scientific and Technological Development(CNPq)(No.309545/2021-8)。
文摘While large language models(LLMs)have made significant strides in natural language processing(NLP),they continue to face challenges in adequately addressing the intricacies of the Chinese language in certain scenarios.We propose a framework called Six-Writings multimodal processing(SWMP)to enable direct integration of Chinese NLP(CNLP)with morphological and semantic elements.The first part of SWMP,known as Six-Writings pictophonetic coding(SWPC),is introduced with a suitable level of granularity for radicals and components,enabling effective representation of Chinese characters and words.We conduct several experimental scenarios,including the following:(1)We establish an experimental database consisting of images and SWPC for Chinese characters,enabling dual-mode processing and matrix generation for CNLP.(2)We characterize various generative modes of Chinese words,such as thousands of Chinese idioms,used as question-and-answer(Q&A)prompt functions,facilitating analogies by SWPC.The experiments achieve 100%accuracy in answering all questions in the Chinese morphological data set(CA8-Mor-10177).(3)A fine-tuning mechanism is proposed to refine word embedding results using SWPC,resulting in an average relative error of≤25%for 39.37%of the questions in the Chinese wOrd Similarity data set(COS960).The results demonstrate that SWMP/SWPC methods effectively capture the distinctive features of Chinese and offer a promising mechanism to enhance CNLP with better efficiency.