期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Simulation for the Controlling Factors of Structural Deformation in the Southern Margin of the Junggar Basin 被引量:3
1
作者 YU Fusheng LI Xiaojian +2 位作者 LI Dinghua FENG Zicheng LI Xueliang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第4期842-853,共12页
According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the n... According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the north are developed in the eastern segment. There are three rows of en echelon thrust-and-fold belts in the western segment. Thrust and fold structures of basement-involved styles are developed in the first row, and decollement fold structures are formed from the second row to the third row. In order to study the factors controlling the deformation of structures, sand-box experiments have been devised to simulate the evolution of plane and profile deformation. The planar simulation results indicate that the orthogonal compression coming from Bogeda Mountain and the oblique compression with an angle of 75° between the stress and the boundary originating from North Tianshan were responsible for the deformation differences between the eastern part and the western part. The Miquan-Uriimqi fault in the basement is the pre-existing condition for generating fragments from east to west. The profile simulation results show that the main factors controlling the deformation in the eastern part are related to the decollement of Jurassic coal beds alone, while those controlling the deformation in the western segment are related to both the Jurassic coal beds and the Eogene clay beds. The total amount of shortening from the Yaomoshan anticline to the Gumudi anticline in the eastern part is -19.57 km as estimated from the simulation results, and the shortening rate is about 36.46%; that from the Qingshuihe anticline to the Anjihai anticline in the western part is -22.01 km as estimated by the simulation results, with a shortening rate of about 32.48%. These estimated values obtained from the model results are very close to the values calculated by means of the balanced cross section. 展开更多
关键词 characteristics of deformation thrust-and-fold belt decollement structure controlling factor sand-box simulation southern margin of the junggar basin
下载PDF
Combination and superimposition of source kitchens and their effects on hydrocarbon accumulation in the hinterland of the Junggar Basin,west China 被引量:2
2
作者 Zhang Zhihuan Qin Liming +3 位作者 Qiu Nansheng Zhong Ningning Zhang Zhenying Li Wei 《Petroleum Science》 SCIE CAS CSCD 2010年第1期59-72,共14页
In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources ... In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources of hydrocarbon vary in different structural belts. The evolution of the Che- Mo palaeohigh affected the formation of hydrocarbon source kitchens and hydrocarbon migration. We studied the combination and superimposition of hydrocarbon source kitchens, using as an example the hinterland of the Junggar Basin (including the Yongjin, Zhengshacun, Moxizhuang and Luliang uplift areas). The study was based on geochemical analyses of crude oil and fluid inclusions, and the histories of tectonic evolution and hydrocarbon generation. The results indicated that before the Paleogene there were two hydrocarbon-generating depressions: the Western Well Penl depression and the Changji depression on the south and north sides of the Che-Mo palaeohigh, respectively. The Permian source kitchen had been generating hydrocarbon continuously since Triassic and reached high maturity stage in the Cretaceous period. After Paleogene, the adjustment of the Che-Mo palaeohigh led to the subsidence of the Changji depression and the Jurassic source rocks reached mature stage and became the main source kitchens. However, the Jurassic source rocks in the Western Well Penl depression were still in a low maturity stage and did not generate oil because of the adjustment of tectonic movements. As a result, in the central and southern parts of the Junggar Basin, Jurassic source rocks generated oil, but in the Luliang uplift, the crude oil was from the Permian source rocks in the Western Well Penl depression and the Jurassic source rocks did not contribute. The crude oil in the central Zhengshacun-Moxizhuang belt was from the Permian source rocks in two depressions, and partially from the Jurassic source rocks. The crude oil in the Luliang uplift was from the source rocks of the lower Permian Fengcheng Formation and middle Permian Wuerhe Formation, which is characterized by superimposition of two sets of source kitchens and three accumulation stages. The crude oil in the Yongjin tectonic belt was from the lower Permian, middle Permian and Jurassic source rocks, which is characterized by superimposition of three sets of source kitchens and two accumulation stages. The crude oil in the Zhengshacun tectonic belt was from a combination of source kitchens of lower Permian and middle Permian in the Western Well Penl depression in the early stage and from the superimposition of Jurassic source rocks in the Changji depression in the late stage. 展开更多
关键词 Hinterland of the junggar basin hydrocarbon source kitchen oil source combination and superimposition accumulation stage
下载PDF
Tectonic geomorphological characteristics for evolution of the Manas Lake 被引量:1
3
作者 Yao, YongHui Li, HuiGuo 《Journal of Arid Land》 SCIE 2010年第3期167-173,共7页
关键词 the Manas Lake the junggar basin wandering lake lacustrine evolution lake inflow Xinjiang
下载PDF
Unconformity structures controlling stratigraphic reservoirs in the north-west margin of Junggar basin, North-west China 被引量:13
4
作者 Kongyou WU Douglas PATON Ming ZHA 《Frontiers of Earth Science》 SCIE CAS CSCD 2013年第1期55-64,共10页
Tectonic movements formed several unconfor- mities in the north-west margin of the Junggar basin. Based on data of outcrop, core, and samples, the unconformity is a structural body whose formation associates with weat... Tectonic movements formed several unconfor- mities in the north-west margin of the Junggar basin. Based on data of outcrop, core, and samples, the unconformity is a structural body whose formation associates with weath- ering, leaching, and onlap. At the same time, the structural body may be divided into three layers, including upper layer, mid layer, and lower layer. The upper layer with good primary porosity serves as the hydrocarbon migration system, and also accumulates the hydrocarbon. The mid layer with compactness and ductility can play a role as cap rock, the strength of which increases with depth. The lower layer with good secondary porosity due to weathering and leaching can form the stratigraphic truncation traps. A typical stratigraphie reservoir lying in the unconformity between the Jurassic and Triassic in the north-west margin of the Junggar basin was meticulously analyzed in order to reveal the key controlling factors. The results showed that the hydrocarbon distribution in the stratigraphic onlap reservoirs was controlled by the onlap line, the hydro- carbon distribution in the stratigraphic truncation reser- voirs was confined by the truncation line, and the mid layer acted as the key sealing rock. So a conclusion was drawn that "two lines (onlap line and truncation line) and a body (unconformity structural body)" control the formation and distribution of stratigraphic reservoirs. 展开更多
关键词 unconformity structural body stratigraphicreservoir key controlling factors Jurassic bottom north-west margin of the junggar basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部