To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic ...The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic diagram are proposed in this study.Through detailed petrographic,mineralogical,and elemental analyses,four distinct shale types are identified:argillaceous shale,siliceous shale,calcareous shale,and carbonate,clay,and silt-bearing shale.The main diagenetic process in argillaceous shale is the transformation of illite to smectite,negatively impacting shale porosity.Siliceous shale undergoes carbonate cementation and quartz dissolution,contributing to increased porosity,particularly in mesopores.Calcareous shale experiences diagenesis characterised by carbonate formation and dissolution,with a prevalence of siderite.In carbonate,clay,and silt-bearing shale,the dissolution of K-feldspar contributes to illitization of kaolinite.Argillaceous shale,characterised by more clay minerals and lower mesopore volume,is identified as a potential hydrocarbon seal.Siliceous shale,with the highest pore volume and abundant inter-mineral pores,emerges as a promising shale oil reservoir.These findings contribute to a comprehensive understanding of shale properties,aiding in the prediction of shale oil exploration potential in the studied area.展开更多
The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of...The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of core observations, experiments and logging, and then the exploration potential and orientation of the Chang 7_(3) shale oil were discussed. The research findings are obtained in three aspects. First, two types of shale oil, i.e. migratory-retained and retained, are recognized in Chang 7_(3). The former is slightly better than the latter in quality. The migratory-retained shale oil reservoir is featured with the frequent interbedding and overlapping of silty-sandy laminae caused by sandy debris flow and low-density turbidity current and semi-deep-deep lacustrine organic-rich shale laminae. The retained shale oil reservoir is composed of black shale with frequent occurrence of bedding and micro-laminae. Second, high-quality source rocks provide a large quantity of hydrocarbon-rich high-quality fluids with high potential energy. The source-reservoir pressure difference provides power for oil accumulation in thin interbeds of organic-poor sandstones with good seepage conditions and in felsic lamina, tuffaceous lamina and bedding fractures in shales. Hydrocarbon generation-induced fractures, bedding fractures and microfractures provide high-speed pathways for oil micro-migration. Frequent sandstone interlayers and felsic laminae provide a good space for large-scale hydrocarbon accumulation, and also effectively improve the hydrocarbon movability. Third, sand-rich areas around the depression are the main targets for exploring migratory-retained shale oil. Mature deep depression areas are the main targets for exploring retained oil with medium to high maturity. Theoretical research and field application of in-situ conversion in low-mature deep depression areas are the main technical orientations for exploring retained shale oil with low to medium maturity.展开更多
The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development o...The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.展开更多
1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral c...Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.展开更多
A set of shale-dominated source rocks series were deposited during the heyday of lake basin development in the Member 7 of Triassic Yanchang Formation,Ordos Basin,and the thickness is about 110 m.Aimed at whether this...A set of shale-dominated source rocks series were deposited during the heyday of lake basin development in the Member 7 of Triassic Yanchang Formation,Ordos Basin,and the thickness is about 110 m.Aimed at whether this layer can form large-scale oil enrichment of industrial value,comprehensive geological research and exploration practice have been carried out for years and obtained the following important geologic findings.Firstly,widely distributed black shale and dark mudstone with an average organic matter abundance of 13.81%and 3.74%,respectively,lay solid material foundation for the formation of shale oil.Secondly,sandy rocks sandwiched in thick organic-rich shale formations constitute an oil-rich"sweet spot",the average thickness of thin sandstone is 3.5 m.Thirdly,fine-grained sandstone and siltstone reservoirs have mainly small pores of 2–8μm and throats of 20–150 nm in radius,but with a large number of micro-pores and nano-throats,through fracturing,the reservoirs can provide good conductivity for the fluid in it.Fourthly,continued high-intensity hydrocarbon generation led to a pressure difference between the source rock and thin-layer reservoir of up to 8–16 MPa during geological history,driven by the high pressure,the oil charged into the reservoirs in large area,with oil saturation reaching more than 70%.Under the guidance of the above theory,in 2019,the Qingcheng Oilfield with geologic oil reserves of billion ton order was proved in the classⅠmulti-stage superimposed sandstone shale reservoir of Chang 7 Member by the Changqing Oilfield Branch through implementation of overall exploration and horizontal well volume fracturing.Two risk exploration horizontal wells were deployed for the classⅡthick layer mud shale interbedded with thin layers of silt-and fine-sandstones reservoir in the Chang 73 submember,and they were tested high yield oil flows of more than 100 tons per day,marking major breakthroughs in petroleum exploration in classⅠshale reservoirs.The new discoveries have expanded the domain of unconventional petroleum exploration.展开更多
综合利用地球化学、扫描电镜、岩心薄片、测井等资料以及油井生产数据等,对鄂尔多斯盆地陕北地区三叠系延长组7段储层特征、烃源岩特征和致密油分布特征进行了分析,从烃源岩展布、输导体系和源-储组合关系3个方面对致密油差异富集控制...综合利用地球化学、扫描电镜、岩心薄片、测井等资料以及油井生产数据等,对鄂尔多斯盆地陕北地区三叠系延长组7段储层特征、烃源岩特征和致密油分布特征进行了分析,从烃源岩展布、输导体系和源-储组合关系3个方面对致密油差异富集控制因素进行了探讨,并总结了成藏模式。研究结果表明:(1)陕北地区长7段致密砂岩储层主要分布在一亚段(长71)和二亚段(长72),以灰色—灰白色长石砂岩和岩屑长石砂岩为主,长71和长72平均孔隙度分别为5.56%和7.32%,平均渗透率分别为0.097 m D和0.110 m D,长72储层物性更好;孔隙空间以溶孔为主,发育少量粒间孔。(2)研究区烃类主要来源于本地长72顶部和长73这2套烃源岩,平均厚度大于20 m,有机质丰度高,平均TOC值为3.02%,干酪根类型以Ⅰ型和Ⅱ1型为主,处于生烃高峰期,平均生烃量为270.2×10^(4)t/km^(2),长73烃源岩生烃潜力更大,供烃至长72储层,长71致密油来源于长72烃源岩;新安边地区三角洲前缘亚相末端的长72储层中致密油由湖盆烃源岩侧向供烃。(3)研究区致密油富集受烃源岩展布、砂体连通性以及源-储组合共同控制,在长72更富集,在新安边地区分布面积最大,安塞地区无大规模致密油聚集;纵向上和平面上致密油的聚集差异受控于烃源岩厚度和源-储组合关系,下生上储、上下生油而中间储集和砂泥互层时含油性更好;新安边地区三角洲前缘亚相末端的长72致密油聚集规模大于三角洲前缘主体,是由于三角洲前缘末端发育的局部连通砂体阻碍了湖盆烃类物质的侧向运移。(4)研究区致密油为“源控-砂控”成藏模式,远源河道优势砂体尖灭处和近源局部连通的砂体是有利勘探区。展开更多
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金founded by National Natural Science Foundation of China(grant Nos.:42072186 and 42090025)National Science and Technology Major Project,China(grant No.:2016ZX05046001)+3 种基金Science and Technology Research Project of Petro China Company Limited,China(grant No.:2021DJ1806)the fund support from China Scholarship Council(No.201806440002)the International Postdoctoral Exchange Fellowship Program,China(Talent-Introduction Program,No.270152)Lin Ma wishes to acknowledge the fund support from Natural Environment Research Council,United Kingdom(NE/R013527/1)。
文摘The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic diagram are proposed in this study.Through detailed petrographic,mineralogical,and elemental analyses,four distinct shale types are identified:argillaceous shale,siliceous shale,calcareous shale,and carbonate,clay,and silt-bearing shale.The main diagenetic process in argillaceous shale is the transformation of illite to smectite,negatively impacting shale porosity.Siliceous shale undergoes carbonate cementation and quartz dissolution,contributing to increased porosity,particularly in mesopores.Calcareous shale experiences diagenesis characterised by carbonate formation and dissolution,with a prevalence of siderite.In carbonate,clay,and silt-bearing shale,the dissolution of K-feldspar contributes to illitization of kaolinite.Argillaceous shale,characterised by more clay minerals and lower mesopore volume,is identified as a potential hydrocarbon seal.Siliceous shale,with the highest pore volume and abundant inter-mineral pores,emerges as a promising shale oil reservoir.These findings contribute to a comprehensive understanding of shale properties,aiding in the prediction of shale oil exploration potential in the studied area.
基金Supported by the CNPC Science and Technology Project (2021DJ1806)the National Key Basic Research and Development Program (973 Program),China (2014CB239003)。
文摘The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of core observations, experiments and logging, and then the exploration potential and orientation of the Chang 7_(3) shale oil were discussed. The research findings are obtained in three aspects. First, two types of shale oil, i.e. migratory-retained and retained, are recognized in Chang 7_(3). The former is slightly better than the latter in quality. The migratory-retained shale oil reservoir is featured with the frequent interbedding and overlapping of silty-sandy laminae caused by sandy debris flow and low-density turbidity current and semi-deep-deep lacustrine organic-rich shale laminae. The retained shale oil reservoir is composed of black shale with frequent occurrence of bedding and micro-laminae. Second, high-quality source rocks provide a large quantity of hydrocarbon-rich high-quality fluids with high potential energy. The source-reservoir pressure difference provides power for oil accumulation in thin interbeds of organic-poor sandstones with good seepage conditions and in felsic lamina, tuffaceous lamina and bedding fractures in shales. Hydrocarbon generation-induced fractures, bedding fractures and microfractures provide high-speed pathways for oil micro-migration. Frequent sandstone interlayers and felsic laminae provide a good space for large-scale hydrocarbon accumulation, and also effectively improve the hydrocarbon movability. Third, sand-rich areas around the depression are the main targets for exploring migratory-retained shale oil. Mature deep depression areas are the main targets for exploring retained oil with medium to high maturity. Theoretical research and field application of in-situ conversion in low-mature deep depression areas are the main technical orientations for exploring retained shale oil with low to medium maturity.
基金financial supports are from the National Natural Science Foundation of China (41702130 and 41971335)China Postdoctoral Science Foundation (2017T100419 and 2019M660269)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.
基金supported by funding the National Basic Research Program of China (973 Program) and the grant number is 2014CB239000
文摘1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
文摘Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.
基金Supported by the China National Science and Technology Major Project(2016ZX05050)the National Key Basic Research and Development Program(973 Program),China(2014CB239003)
文摘A set of shale-dominated source rocks series were deposited during the heyday of lake basin development in the Member 7 of Triassic Yanchang Formation,Ordos Basin,and the thickness is about 110 m.Aimed at whether this layer can form large-scale oil enrichment of industrial value,comprehensive geological research and exploration practice have been carried out for years and obtained the following important geologic findings.Firstly,widely distributed black shale and dark mudstone with an average organic matter abundance of 13.81%and 3.74%,respectively,lay solid material foundation for the formation of shale oil.Secondly,sandy rocks sandwiched in thick organic-rich shale formations constitute an oil-rich"sweet spot",the average thickness of thin sandstone is 3.5 m.Thirdly,fine-grained sandstone and siltstone reservoirs have mainly small pores of 2–8μm and throats of 20–150 nm in radius,but with a large number of micro-pores and nano-throats,through fracturing,the reservoirs can provide good conductivity for the fluid in it.Fourthly,continued high-intensity hydrocarbon generation led to a pressure difference between the source rock and thin-layer reservoir of up to 8–16 MPa during geological history,driven by the high pressure,the oil charged into the reservoirs in large area,with oil saturation reaching more than 70%.Under the guidance of the above theory,in 2019,the Qingcheng Oilfield with geologic oil reserves of billion ton order was proved in the classⅠmulti-stage superimposed sandstone shale reservoir of Chang 7 Member by the Changqing Oilfield Branch through implementation of overall exploration and horizontal well volume fracturing.Two risk exploration horizontal wells were deployed for the classⅡthick layer mud shale interbedded with thin layers of silt-and fine-sandstones reservoir in the Chang 73 submember,and they were tested high yield oil flows of more than 100 tons per day,marking major breakthroughs in petroleum exploration in classⅠshale reservoirs.The new discoveries have expanded the domain of unconventional petroleum exploration.
文摘综合利用地球化学、扫描电镜、岩心薄片、测井等资料以及油井生产数据等,对鄂尔多斯盆地陕北地区三叠系延长组7段储层特征、烃源岩特征和致密油分布特征进行了分析,从烃源岩展布、输导体系和源-储组合关系3个方面对致密油差异富集控制因素进行了探讨,并总结了成藏模式。研究结果表明:(1)陕北地区长7段致密砂岩储层主要分布在一亚段(长71)和二亚段(长72),以灰色—灰白色长石砂岩和岩屑长石砂岩为主,长71和长72平均孔隙度分别为5.56%和7.32%,平均渗透率分别为0.097 m D和0.110 m D,长72储层物性更好;孔隙空间以溶孔为主,发育少量粒间孔。(2)研究区烃类主要来源于本地长72顶部和长73这2套烃源岩,平均厚度大于20 m,有机质丰度高,平均TOC值为3.02%,干酪根类型以Ⅰ型和Ⅱ1型为主,处于生烃高峰期,平均生烃量为270.2×10^(4)t/km^(2),长73烃源岩生烃潜力更大,供烃至长72储层,长71致密油来源于长72烃源岩;新安边地区三角洲前缘亚相末端的长72储层中致密油由湖盆烃源岩侧向供烃。(3)研究区致密油富集受烃源岩展布、砂体连通性以及源-储组合共同控制,在长72更富集,在新安边地区分布面积最大,安塞地区无大规模致密油聚集;纵向上和平面上致密油的聚集差异受控于烃源岩厚度和源-储组合关系,下生上储、上下生油而中间储集和砂泥互层时含油性更好;新安边地区三角洲前缘亚相末端的长72致密油聚集规模大于三角洲前缘主体,是由于三角洲前缘末端发育的局部连通砂体阻碍了湖盆烃类物质的侧向运移。(4)研究区致密油为“源控-砂控”成藏模式,远源河道优势砂体尖灭处和近源局部连通的砂体是有利勘探区。