期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
The 2022 Extreme Heatwave in Shanghai,Lower Reaches of the Yangtze River Valley:Combined Influences of Multiscale Variabilities
1
作者 Ping LIANG Zhiqi ZHANG +2 位作者 Yihui DING Zeng-Zhen HU Qi CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期593-607,共15页
In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in th... In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales. 展开更多
关键词 extreme heatwave multiscale variability air-sea interaction warming trend yangtze river valley SHANGHAI
下载PDF
Teleconnection between the Indian summer monsoon onset and the Meiyu over the Yangtze River Valley 被引量:13
2
作者 LIU YunYun1,2,3 & DING YiHui2 1 Chinese Academy of Meteorological Sciences, Beijing 100081, China 2 National Climate Center, Beijing 100081, China 3 Graduate University of Chinese Academy of Sciences, Beijing 100049, China 《Science China Earth Sciences》 SCIE EI CAS 2008年第7期1021-1035,共15页
Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data, the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been dis... Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data, the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM, the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the telecon- nection mode which is from the northwest of India via the Tibetan Plateau to northern China. The for- mer mode is defined as the "south" teleconnection of the Asian summer monsoon, forming in the pe- riod of ISM onset; while the latter mode is called the "north" teleconnection, mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection’s formation, the Asian monsoon circulation has experienced a series of important changes: ISM onset, the northward movement of the south Asia high (SAH), the onset vortex occurrence, the eastward extension of the stronger tropical westerly belt, and the northeastward jump of the western Pacific subtropical high (WPSH), etc. Consequently, since ISM sets up over Kerala, the whole Asian continent is covered by the upper SAH after about two weeks, while in the mid- and lower troposphere, a strong wind belt forms from the Arabian Sea via the southern India, BOB and the South China Sea (SCS), then along the western flank of WPSH, to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams, the upper westerly jet stream and the low level jet have been coupled ver- tically over east Asia, while the Yangtze River Valley happens to locate in the ascending motion area between the upper jet stream and the low level jet, i.e. right of the entrance of the upper jet stream and left of the low level jet. Such a structure of the vertical circulation can trigger the Meiyu onset over the Yangtze River Valley. 展开更多
关键词 INDIAN summer monsoon (ISM) the meiyu over the yangtze river valley TELECONNECTION mode
原文传递
Why Was the Strengthening of Rainfall in Summer over the Yangtze River Valley in 2016 Less Pronounced than that in 1998 under Similar Preceding El Nino Events?Role of Midlatitude Circulation in August 被引量:13
3
作者 chaofan li wei chen +1 位作者 xiaowei hong riyu lu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第11期1290-1300,共11页
It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of E1 Nifio, as demonstrated by the catastrophic flooding suffered in the summer of 1998.... It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of E1 Nifio, as demonstrated by the catastrophic flooding suffered in the summer of 1998. Nevertheless, the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998, despite the intensity of the 2016 E1 Nifio having been as strong as that in 1998. A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years, principally in August. The precipitation anomaly was negative in August 2016--different to the positive anomaly of 1998. 展开更多
关键词 yangtze river valley summer rainfall super El Nio sub-seasonal variation Silk Road Pattern
下载PDF
Synergistic Contribution of Precipitation Anomalies over Northwestern India and the South China Sea to High Temperature over the Yangtze River Valley 被引量:8
4
作者 LIU Ge WU Renguang +1 位作者 SUN Shuqing WANG Huimei 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第9期1255-1265,共11页
This study explores the characteristics of high temperature anomalies over eastern China and associated influencing factors using observations and model outputs.Results show that more long-duration(over 8 days) high... This study explores the characteristics of high temperature anomalies over eastern China and associated influencing factors using observations and model outputs.Results show that more long-duration(over 8 days) high temperature events occur over the middle and lower reaches of the Yangtze River Valley(YRV) than over the surrounding regions,and control most of the interannual variation of summer mean temperature in situ.The synergistic effect of summer precipitation over the South China Sea(SCS) region(18°–27°N,115°–124°E) and the northwestern India and Arabian Sea(IAS) region(18°–27°N,60°–80°E) contributes more significantly to the variation of summer YRV temperature,relative to the respective SCS or IAS precipitation anomaly.More precipitation(enhanced condensational heating) over the SCS region strengthens the western Pacific subtropical high(WPSH) and simultaneously weakens the westerly trough over the east coast of Asia,and accordingly results in associated high temperature anomalies over the YRV region through stimulating an East Asia–Pacific(EAP) pattern.More precipitation over the IAS region further adjusts the variations of the WPSH and westerly trough,and eventually reinforces high temperature anomalies over the YRV region.Furthermore,the condensational heating related to more IAS precipitation can adjust upper-tropospheric easterly anomalies over the YRV region by exciting a circumglobal teleconnection,inducing cold horizontal temperature advection and related anomalous descent,which is also conducive to the YRV high temperature anomalies.The reproduction of the above association in the model results indicates that the above results can be explained both statistically and dynamically. 展开更多
关键词 high temperature events yangtze river valley precipitation ECHAM5
下载PDF
A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach 被引量:9
5
作者 王树舟 于恩涛 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第4期731-743,共13页
In this study, the major features of a heavy rainfall event in the Yangtze River region on 3-7 June 2011 and its event-related large-scale circulation and predictability were studied. Both observational analysis and m... In this study, the major features of a heavy rainfall event in the Yangtze River region on 3-7 June 2011 and its event-related large-scale circulation and predictability were studied. Both observational analysis and model simulation were used, the latter being based on the Weather Research and Forecasting (WRF) model forced by NCEP Global Forecast System (GFS) datasets. It was found that, during 3-5 June, the western Pacific subtropical high apparently extended to the west and was much stronger, and the Indian summer monsoon trough was slightly weaker than in normal years. The east-west oriented shear line over the middle and lower reaches of the Yangtze River was favorable for the transportation and convergence of water vapor, and the precipitation band was located slightly to the south of the shear line. During 6-7 June, the western Pacific subtropical high retreated eastward, while the trough over the Okhotsk Sea deepened. The low vortex in Northeast China intensified, bringing much more cold air to the middle and lower reaches of the Yangtze River, and the shear line over this area moved slightly southward. The convection band moved southward and became weaker, so the rainfall during 6-7 June weakened and was located slightly to the south of the previous precipitation band. Many of the observed features, including background circulation and the distribution and amount of precipitation, were reproduced reasonably by the WRF, suggesting a feasibility of this model for forecasting extreme weather events in the Yangtze River region. 展开更多
关键词 WRF yangtze river valley heavy rainfall shear line
下载PDF
Anomalous Midsummer Rainfall in Yangtze River-Huaihe River Valleys and Its Association with the East Asia Westerly Jet 被引量:20
6
作者 宣守丽 张庆云 孙淑清 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第2期387-397,共11页
In this study, the interannual and interdecadal relationship between midsummer Yangtze River-Huaihe River valley (YHRV) rainfall and the position of the East Asia westerly jet (EAWJ) were investigated. The midsumm... In this study, the interannual and interdecadal relationship between midsummer Yangtze River-Huaihe River valley (YHRV) rainfall and the position of the East Asia westerly jet (EAWJ) were investigated. The midsummer YHRV rainfall was found to significantly increase after the 1980s. Moreover, the location of the EAWJ was found abnormally south of the climatic mean during 1980–2008 (ID2) compared to 1951–1979 (ID1). During ID2, associated with the southward movement of the EAWJ, an anomalous upper-level conver-gence occurred over middle-high latitudes (35° –55° N) and divergence occurred over lower latitudes (~30°N) of East Asia. Correspondingly, anomalous descending and ascending motion was observed in middle-high and lower latitudes along 90°–130° E, respectively, favoring more precipitation over YHRV. On an interan-nual time scale, the EAWJ and YHRV rainfall exhibited similar relationships during the two periods. When the EAWJ was centered abnormally southward, rainfall over YHRV tended to increase. However, EAWJ-related circulations were significantly different during the two periods. During ID1, the circulation of the southward-moving EAWJ exhibited alternating positive–negative–positive distributions from low to middle– high latitudes along the East Asian coast; the most significant anomaly appeared west of the Okhotsk Sea. However, during ID2 the EAWJ was more closely correlated with the tropical and subtropical circulations. Significant differences between ID1 and ID2 were also recorded sea surface temperatures (SSTs). During ID1, the EAWJ was influenced by the extratropical SST over the northern Pacific; however, the EAWJ was more significantly affected by the SST of the tropical western Pacific during ID2. 展开更多
关键词 anomalous rainfall events yangtze river-Huaihe river valleys East Asian westerly jet wave activity
下载PDF
Numerical Simulation of the 1999 Yangtze River Valley Heavy Rainfall Including Sensitivity Experiments with Different SSTA 被引量:8
7
作者 郭裕福 王嘉 赵彦 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第1期23-33,共11页
With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the correspondi... With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions, the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied. The results show that the positive SSTA in the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer. The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated, and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying El Nino event and also in a La Nina event. However, the different SSTA of different periods in the above three cases play different parts. 展开更多
关键词 yangtze river valley heavy rainfall sea surface temperature anomaly numerical simulation
下载PDF
Correlation Analysis of Persistent Heavy Rainfall Events in the Vicinity of the Yangtze River Valley and Global Outgoing Longwave Radiation in the Preceding Month 被引量:6
8
作者 汤燕冰 赵璐 高坤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第6期1169-1180,共12页
Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974-2004 and the NCEP-NCAR reanalysis for 1971- 2004, the ... Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974-2004 and the NCEP-NCAR reanalysis for 1971- 2004, the linkage between persistent heavy rainfall (PHR) events in the vicinity of the Yangtze River valley and global OLR leading up to those events (with 1- to 3O-day lag) was investigated. The results reveal that there is a significant connection between the initiation of PHR events over the study area and anomalous convective activity over the tropical Indian Ocean, maritime continent, and tropical western Pacific Ocean. During the 30-day period prior to the onset of PHR events, the major significantly anomalous convective centers have an apparent dipole structure, always with enhanced convection in the west and suppressed convection in the east. This dipole structure continuously shifts eastward with time during the 30-day lead period. The influence of the anomalous convective activity over the tropical oceans on the initiation of PHR events over the study area is achieved via an interaction between tropical and extratropical latitudes. More specifically, anomalous convective activity weakens the Walker circulation cell over the tropical Indian Ocean first. This is followed by a weakening of the Indian summer monsoon background state and the excitation and dispersion of Rossby wave activity over Eurasia. Finally, a major modulation of the large scale background circulation occurs. As a result, the condition of a phase-lock among major large scale circulation features favoring PHR events is established over the study area. 展开更多
关键词 persistent heavy rainfall events global outgoing longwave radiation the yangtze river valley
下载PDF
Numerical Simulation of the Relationships between the 1998 Yangtze River Valley Floods and SST Anomalies 被引量:3
9
作者 郭裕福 赵 彦 王 嘉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期391-404,共14页
With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results sho... With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the sum-mer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the ef-fects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a ma-jor contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons. 展开更多
关键词 the yangtze river valley floods SST anomalies Numerical simulation
下载PDF
THE RELATIONSHIP BETWEEN THE ATMOSPHERIC HEATING SOURCE/SINK ANOMALIES OF ASIAN MONSOON AND FLOOD/DROUGHT IN THE YANGTZE RIVER BASIN IN THE MEIYU PERIOD 被引量:4
10
作者 岑思弦 巩远发 +1 位作者 赖欣 彭亮 《Journal of Tropical Meteorology》 SCIE 2015年第4期352-360,共9页
NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 1... NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR. 展开更多
关键词 气象学 热带气象 大气科学 理论 方法
下载PDF
Development of a Meteorological and Hydrological Coupling Index for Droughts and Floods along the Yangtze River Valley of China 被引量:1
11
作者 牛涛 王继志 +3 位作者 杨元琴 刘洪利 陈淼 刘冀彦 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第6期1653-1662,共10页
To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical... To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical data. The results indicate that: (1) in representing drought/flood information for the Yangtze River valley, the MHCI can reflect composite features of precipitation and hydrological observations; (2) compre- hensive analysis of the interannual phase difference of the precipitation and hydrological indices is important to recognize and predict annual drought/flood events along the valley; the hydrological index contributes more strongly to nonlinear and continuity features that indicate transition from long-term drought to flood conditions; (3) time series of the MHCI from 1960-2009 are very effective and sensitive in reflecting annual drought/flood characteristics, i.e. there is more rainfall or typical flooding in the valley when the MHCI is positive, and vice versa; and (4) verification of the MHCI indicates that there is significant correlation between precipitation and hydrologic responses in the valley during summer; the correlation coefficient was found to reach 0.82, exceeding the 0.001 significance level. 展开更多
关键词 meteorological and hydrological coupling index (MHCI) yangtze river valley recent 50 years drought and flood
下载PDF
The Effect of Geologic Structures on the Control of Floods in the Middle Yangtze River Valley
12
作者 Tong Qianming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期344-348,共5页
This paper discusses the role of geologic structures in the occurrence of floods and how to prevent flood in the middle reaches of the Yangtze River, and gives the author's suggestion that the Luoshan Qiakou be ex... This paper discusses the role of geologic structures in the occurrence of floods and how to prevent flood in the middle reaches of the Yangtze River, and gives the author's suggestion that the Luoshan Qiakou be expanded and the land reclaimed from Dongting Lake be returned to the lake in compliance with the law of geology. 展开更多
关键词 the middle yangtze river valley STRUCTURES FLOOD flood control
下载PDF
Changes of the relationship between population and environment in the Yangtze River Valley in history
13
作者 ZHANG Dixiang SUN PingThe Population Research Institute, Wuhan Unviersity, Wuchang 430072 CHINA 《Journal of Geographical Sciences》 SCIE CSCD 1998年第2期65-72,共8页
The Yangtze River Valley (YRV) occupies a very important position in the course of historical development of the Chinese nation. Since the early stage of Old Stone Age, our forefathers have laboured, lived and multipl... The Yangtze River Valley (YRV) occupies a very important position in the course of historical development of the Chinese nation. Since the early stage of Old Stone Age, our forefathers have laboured, lived and multiplied on this land, and left us plentiful of ancient cultural heritage. The fossil of Yunyang Man found in Yunyang of Hubei Province based on determination was two million years ago. That is to say, the populationenvironment relationship in the YRV has gone on at least over two million years. Here we briefly inquire into the history of variations in the development of the populationenvironment relationship in the YRV in the period of feudal society including semicolonial and semifeudal society in modern times. 展开更多
关键词 populationenvironment historical change yangtze river valley.
下载PDF
Distribution of winter-spring snow over the Tibetan Plateau and its relationship with summer precipitationin Yangtze River
14
作者 ZhuoGa TaoChen +2 位作者 LaBa PuBuCiRen BaSang 《Research in Cold and Arid Regions》 CSCD 2017年第1期20-28,共9页
The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been ... The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been investigated with the moderate-resolution imaging spectrometer (MODIS) Terra data (MOD10A2) and precipitation observations. Results show that snow cover percentage (SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency (SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003-2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. Hie multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning,development and cessation of the rain belt in eastern China. 展开更多
关键词 winter-spring snow cover Tibetan Plateau RELATIONSHIP summer precipitation yangtze river valley MODIS Reprojection Tool
下载PDF
Holocene environmental change and archaeology,Yangtze River Valley,China:Review and prospects 被引量:17
15
作者 Li Wu Feng Li +2 位作者 Cheng Zhu Lan Li Bing Li 《Geoscience Frontiers》 CAS 2012年第6期875-892,共18页
Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental c... Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeo- flood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedi- mentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern tech- nology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in envi- ronmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area. 展开更多
关键词 HOLOCENE Environmental changeEnvironmentalarchaeology yangtze river valley
下载PDF
Improving Multi-model Ensemble Probabilistic Prediction of Yangtze River Valley Summer Rainfall 被引量:4
16
作者 LI Fang LIN Zhongda 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第4期497-504,共8页
Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier mu... Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier multi-model ensemble(MME) prediction schemes for summer rainfall over China focus on single-value prediction, which cannot provide the necessary uncertainty information, while commonly-used ensemble schemes for probability density function(PDF) prediction are not adapted to YRV summer rainfall prediction. In the present study, an MME PDF prediction scheme is proposed based on the ENSEMBLES hindcasts. It is similar to the earlier Bayesian ensemble prediction scheme, but with optimization of ensemble members and a revision of the variance modeling of the likelihood function. The optimized ensemble members are regressed YRV summer rainfall with factors selected from model outputs of synchronous 500-h Pa geopotential height as predictors. The revised variance modeling of the likelihood function is a simple linear regression with ensemble spread as the predictor. The cross-validation skill of 1960–2002 YRV summer rainfall prediction shows that the new scheme produces a skillful PDF prediction, and is much better-calibrated, sharper, and more accurate than the earlier Bayesian ensemble and raw ensemble. 展开更多
关键词 probability density function seasonal prediction multi-model ensemble yangtze river valley summer rainfall Bayesian scheme
下载PDF
Interannual variability of the Meiyu onset over Yangtze-Huaihe River Valley and analyses of its previous strong influence signal 被引量:7
17
作者 WANG Jing HE JinHai +1 位作者 LIU XuanFei WU BinGui 《Chinese Science Bulletin》 SCIE EI CAS 2009年第4期687-695,共9页
Meiyu onset (MO) over Yangtze-Huaihe River Valley (YHRV) possesses obvious characteristics of interannual variations. Based on NCEP/NCAR reanalysis data sets, NOAA OLR and ERSST data, the in-terannual variability of M... Meiyu onset (MO) over Yangtze-Huaihe River Valley (YHRV) possesses obvious characteristics of interannual variations. Based on NCEP/NCAR reanalysis data sets, NOAA OLR and ERSST data, the in-terannual variability of MO(IVMO) and its previous strong influence signal (PSIS) are investigated. The possible mechanisms that the PSIS affecting IVMO are also discussed. The results show that the pre-vious CP-ENSO (Central Pacific El Nio/Southern Oscillation) event is the PSIS affecting IVMO and it has a better accuracy rate of short-term climate prediction and practicality. The MO is most likely to be late (early) with the warm (cold) phase of CP-ENSO in previous boreal February and spring. CP-ENSO affects MO mainly by means of EAP (East Asian-Pacific) or JP (Japanese-Pacific) teleconnection, in which the tropical western North Pacific anticyclone plays an important role. In the years of CP-ENSO warm phase, the tropical warm wet water vapor transportation to YHRV is late. The anomalous positive sea surface temperature near the equatorial central Pacific results in late northward jump of the western Pacific subtropical high and late establishment of Indian southwest monsoon via air-sea interaction, which leads to late seasonal transition of the atmospheric circulations over East Asia from boreal spring to summer. Late seasonal transition of the atmospheric circulations and late tropical warm wet water vapor transport to YHRV are the primary reasons that cause the late MO. The situations are directly opposite in the years of CP-ENSO cold phase. 展开更多
关键词 长江-淮河流域 气候预报 环境行动规划 潮湿水蒸汽
原文传递
Modes of Mesoscale Convective System Organization During Meiyu Season over the Yangtze River Basin 被引量:7
18
作者 王晓芳 崔春光 +1 位作者 崔文君 石燕 《Journal of Meteorological Research》 SCIE 2014年第1期111-126,共16页
Mesoscale convective systems (MCSs) are classified and investigated through a statistical analysis of composite radar reflectivity data and station observations during June and July 2010-2012. The number of linear-m... Mesoscale convective systems (MCSs) are classified and investigated through a statistical analysis of composite radar reflectivity data and station observations during June and July 2010-2012. The number of linear-mode MCSs is slightly larger than the number of nonlinear-mode MCSs. Eight types of linear-mode MCSs are identified: trailing stratiform MCSs (TS), leading stratiform MCSs (LS), training line/adjoining stratiform MCSs (TL/AS), back-building/quasi-stationary MCSs (BB), parallel stratiform MCSs (PS), bro- ken line MCSs (BL), embedded line MCSs (EL), and long line MCSs (LL). Six of these types have been identified in previous studies, but EL and LL MCSs are described for the first time by this study. TS, LS, PS, and BL MCSs are all moving systems, while TL/AS, BB, EL, and LL MCSs are quasi-stationary. The average duration of linear-mode MCSs is more than 7 h. TL/AS and TS MCSs typically have the longest durations. Linear-mode MCSs often develop close to the Yangtze River, especially over low-lying areas and river valleys. The diurnal cycle of MCS initiation over the Yangtze River valley contains multiple peaks. The vertical distribution of environmental wind is decomposed into storm-relative perpendicular and parallel wind components. The environmental wind field is a key factor in determining the organizational mode of a linear-mode MCS. 展开更多
关键词 yangtze river valley meiyu season linear MCS modes of MCS organization environmentalcharacteristics
原文传递
The 20―30-day oscillation of the global circulation and heavy precipitation over the lower reaches of the Yangtze River valley 被引量:9
19
作者 YANG QiuMing Jiangsu Meteorological Institute, Nanjing 210008, China 《Science China Earth Sciences》 SCIE EI CAS 2009年第10期1485-1501,共17页
Based on the observational data in summer, the variations of intraseasonal oscillation (ISO) of the daily rainfall over the lower reaches of the Yangtze River valley (LYRV) were studied by using the non-integer spectr... Based on the observational data in summer, the variations of intraseasonal oscillation (ISO) of the daily rainfall over the lower reaches of the Yangtze River valley (LYRV) were studied by using the non-integer spectrum analysis. The NCEP/NCAR reanalysis data for the period of 1979―2005 were analyzed by principal oscillation pattern analysis (POP) to investigate the spatial and temporal characteristics of principal ISO patterns of the global circulation. The relationships of these ISO patterns to the rainfall ISO and the heavy precipitation process over LYRV were also discussed. It is found that the rainfall over LYRV in May―August is mainly of periodic oscillations of 10―20, 20―30 and 60―70 days, and the interannual variation of the intensity of its 20―30-day oscillation has a strongly positive correlation with the number of the heavy precipitation process. Two modes (POP1, POP2) are revealed by POP for the 20―30-day oscillation of the global 850 hPa geopotential height. One is a circumglobal telecon-nection wave train in the middle latitude of the Southern Hemisphere (SCGT) with an eastward propagation, and the other is the southward propagation pattern in the tropical western Pacific (TWP). The POP modes explain 7.72% and 7.66% of the variance, respectively. These two principal ISO patterns are closely linked to the low frequency rainfall and heavy precipitation process over LYRV, in which the probability for the heavy precipitation process over LYRV is 54.9% and 60.4% for the positive phase of the imaginary part of POP1 and real part of POP2, respectively. Furthermore, the models of the global atmospheric circulation for the 20―30-day oscillation in association with or without the heavy pre-cipitation process over LYRV during the Northern Hemisphere summer are set up by means of the composite analysis method. Most of the heavy precipitation processes over LYRV appear in Phase 4 of SCGT or Phase 6 of TWP. When the positive phases of 20―30-day oscillations for the rainfall over LYRV are associated with (without) the heavy precipitation process, a strong westerly stream appears (disappears) from the Arabian Sea via India and Bay of Bengal (BOB) to southern China and LYRV for the global 850 hPa filtered wind field during Phase 4 of SCGT. This situation is favorable (unfavorable) for the forming of the heavy precipitation process over LYRV. Similarly, a strong (weak) western wind belt forms from India through BOB to southern China and LYRV and the subtropical northwestern Pacific and central and eastern equatorial Pacific during Phase 6 of TWP for the cases with (without) the heavy precipitation process. The evolutions of these ISO patterns related to the 20―30-day oscillation are excited by either the interaction of extratropical circulation in both hemispheres or the heat source forcing in Asia monsoon domain and internal interaction of circulation in East Asia. These two global circulation models might therefore provide valuable information for the extended-range forecast of the heavy precipitation process over LYRV during the 10―30 days. 展开更多
关键词 20―30-day OSCILLATION heavy precipitation process over reaches of yangtze river valley principal OSCILLATION pattern GLOBAL atmospheric CIRCULATION models summer
原文传递
Influences of three oceans on record-breaking rainfall over the Yangtze River Valley in June 2020 被引量:6
20
作者 Jiayu ZHENG Chunzai WANG 《Science China Earth Sciences》 SCIE EI CSCD 2021年第10期1607-1618,共12页
The rainfall over the Yangtze River Valley(YRV)in June 2020 broke the record since 1979.Here we show that all three oceans of the Pacific,Indian and Atlantic Oceans contribute to the YRV rainfall in June 2020,but the ... The rainfall over the Yangtze River Valley(YRV)in June 2020 broke the record since 1979.Here we show that all three oceans of the Pacific,Indian and Atlantic Oceans contribute to the YRV rainfall in June 2020,but the Atlantic plays a dominant role.The sea surface temperature(SST)anomalies in three oceans are associated with the two vorticity anomalies:negative 200-hPa relative vorticity anomalies over North China(NC)and negative 850-hPa relative vorticity anomalies in the South China Sea(SCS).The rainfall anomalies in the YRV are mainly controlled by atmospheric process associated with the NC vorticity.The positive SST anomalies in May over the western North Atlantic induce positive geopotential height anomalies in June over the mid-latitude North Atlantic,which affect the rainfall anomalies in the YRV by changing the NC vorticity via Atlantic-induced atmospheric wave train across Europe.The Indian Ocean and tropical North Atlantic,as capacitors of Pacific El Niño events in the preceding winter,affect the SCS vorticity associated with the anomalous anticyclone over the SCS and also facilitate the YRV rainfall by providing favorable moisture conditions.This study suggests that the May SST over the western North Atlantic is a good predictor of June rainfall anomalies in the YRV and highlights the important impacts of three-ocean SSTs on extreme weather and climate events in China. 展开更多
关键词 RAINFALL yangtze river valley Western North Atlantic Three oceans
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部