In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in th...In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales.展开更多
The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the or...The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.展开更多
The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt, East China, and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting, t...The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt, East China, and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting, through the Middle Triassic continent-continent collision to the Jurassic-Cretaceous intracontinental tectono-magmatic activation. The Carboniferous sedimentary-exhalative processes in the area produced widespread massive sulfides with ages of 303-321 Ma, which partly formed massive pyrite-Cu deposits, but mostly provided significant sulfur and metals to the skarn Cu mineralization associated with the Yanshanian felsic intrusions.To understand the Carboniferous submarine hydrothermal system, an area of about 1046 km^2 was chosen to carry out the geological fluid mapping. Associated with massive sulfide formation, footwall sequences 948 m to 1146 m thick, composed of the Lower Silurian-Upper Devonian sandstone, siltstone and thin-layered shale, were widely altered. This hydrothermal alteration is interpreted to reflect largescale hydrothermal fluid flow associated with the late Paleozoic crustal rifting and subsidence. Three hydrothermal alteration types, i.e., deep-level semiconformable siliclfication (S1), fracture-controlled quartz-sericite-pyrite alteration (S2-3), and upper-level sub-discordant quartz-sericite-chlorite alteration (D3), were developed to form distinct zones in the mapped area. About 50-m thick semiconformable silicification zones are located at -1-km depth below massive sulfides and developed between an impermeable shale caprock (S1) and the underlying Ordovician unaltered limestone. Comparisons with modern geothermal systems suggest that the alteration zones record a sub-seafioor aquifer with the most productive hydrothermal fluid flow. Fracture-controlled quartz-sericite-pyrite alteration formed transgressive zones, which downward crosscut the semiconformable alteration zones, and upwards grade into sub-discordant alteration zones that enveloped no economic stringer- stockwork zones beneath massive sulfides. This transgressive zone likely marks an upfiow path of high- flux fluids from the hydrothermal aquifer. Lateral zonation of the sub-discordant alteration zones and their relationship to overlying massive sulfide lenses suggest lateral flows and diffusive discharging of the hydrothermal fluids in a permeable sandstone sequence. Three large-sized, 14 middle-small massive sulfide deposits, and 40 massive sulfide sites have been mapped in detail. They show regional strata- bound characters and two major styles, i.e., the layered sheet plus strata-bound stringer-style and the mound-style. Associated exhalite and chemical sedimentary rock suites include (1) anhydrite-barite, (2) jasper-chert, (3) Mg-rich mudstone-pyrite shale, (4) barite lens, (5) siderite-Fe-bearing dolomite, and (6) Mn-rich shale-mudstone, which usually comprise three sulfide-exhalite cyclic units in the area.The spatial distribution of these alteration zones (minerals) and associated massive sulfdes and exhalites, and regional variation in δ^34S of hydrothermal pyrite and in δ^18O-δ^34C of hanging wall carbonates, suggest three WNW-extending domains of fluid flow, controlled by the basement faults and syn-depositional faults. Each fluid domain appears to have at least two upflow zones, with estimated even spacing of about 5-8 km in the mapped area. The repeated appearance of sulfide-sulfate or sulfide-carbonate rhythmic units in the area suggests episodically venting of fluids through the upfiow conduits by breaking the overlying seals of the hydrothermal aquifer.展开更多
The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed i...The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.展开更多
In the East Asian monsoon region, eolian deposits widely distributed in the middle-lower reaches of the Yantgze River are among the best materials available for studies on Quaternary climate change in the subtropical ...In the East Asian monsoon region, eolian deposits widely distributed in the middle-lower reaches of the Yantgze River are among the best materials available for studies on Quaternary climate change in the subtropical zone of Southern China. Typical eolian deposits in this region include upper Xiashu Loess (XL) and underlying Vermiculated Red Soil (VRS) layers. In this paper, chronological and paleoclimatic studies are conducted on an eolian deposit sequence near Jiujiang (J J) city in northern Jiangxi province. A magnetostratigraphic study, combined with optically stimulated luminescence (OSL) dating, is conducted on the JJ section and provides further evidence that eolian deposits in the middle-lower reaches of the Yangtze River have been formed since the late Early Pleistocene, and that the boundary age between the XL and VRS layers is about 300-400 kaBP. In grain-size records of the JJ section, the median grain-size and content of the 〉30μn size fraction increase sharply after 300-400 kaBP, representing an East Asian winter monsoon intensification event. Further pollen analysis reveals differing pollen assemblages before and after 300-400 kaBP: there is an evident increase in plants adapted to grow in a warm humid environment after 300-400 kaBP, implying an increase in precipitation caused by intensification of the East Asian summer monsoon. Global ice volume and uplift of the Tibet Plateau (TP) are regarded as crucial factors influencing variations of the East Asian monsoon on a long-term scale. The deep-sea JlSO record, which reflects variations in global ice volume, shows no obvious change after 300-400 kaBP. Moreover, the influence of global ice volume changes on the East Asian summer and winter monsoons is inverse; the global ice volume increase (decrease) implies a strengthened (weakened) winter monsoon and weakened (strengthened) summer monsoon. We therefore interpret the coupled intensifications of the East Asian summer and winter monsoons at about 300-400 kaBP to the uplift of the TP in the Middle Pleistocene. This climate event is also documented in eolian deposits from the southern margin of the Chinese Loess Plateau (CLP) and from the desert-loess transitional belt. However, it is not recorded in the loess-paleosol sequences from the central part of the CLP, thereby indicating differing climate responses to TP uplift in different regions, which requires further study.展开更多
The middle-lower Yangtze area underwent a series of complex tectonic evolution, such as Hercynian extensional rifting, Indosinian foreland basining, and Yanshanian transpression-transtension, resulting in a large dist...The middle-lower Yangtze area underwent a series of complex tectonic evolution, such as Hercynian extensional rifting, Indosinian foreland basining, and Yanshanian transpression-transtension, resulting in a large distinctive Cu-Fe-Au metallogenic belt. In the tectonic evolution, large-scale migration and convergence of fluids toward foreland basins induced during the collisional orogeny of the Yangtze and North China continental blocks were of vital importance for the formation of the metallogenic belt. Through geological surveys of the middle-lower Yangtze area, three lines of evidence of large-scale fluid migration are proposed: (1) The extensive dolomitic and silicic alteration penetrating Cambrian-Triassic strata generally occurs in a region sandwiched between the metallogenic belt along the Yangtze River and the Dabie orogenic belt, and in the alteration domain alternately strong and weak alteration zones extend in a NW direction and are controlled by the fault system of the Dabie orogenic belt; it might record the locus of the activities of long-distance migrating fluids. (2) The textures and structures of very thick Middle-Lower Triassic anhydrock sequences in restricted basins along the river reveal the important contribution of the convergence of regional hot brine in restricted basins and the chemical deposition or their formation. (3) Early-Middle Triassic syndepositional iron carbonate sequences and Fe-Cu-Pb-Zn massive sulfide deposits alternate with anhydrock sequences or are separated from the latter, but all of them occur in the same stratigraphic horizon and are intimately associated with each other, being the product of syndeposition of high-salinity hot brine. According to the geological surveys, combined with previous data, the authors propose a conceptual model of fluid migration-convergence and mineralization during the Dabie collisional orogeny.展开更多
Thallium has been used geochemical exploration of gold deposits. However, as an indicator element in searching for hydrothermal the T1 minerals and mineralization are rare in nature. Lorandite T1AsS2, a relatively un...Thallium has been used geochemical exploration of gold deposits. However, as an indicator element in searching for hydrothermal the T1 minerals and mineralization are rare in nature. Lorandite T1AsS2, a relatively uncommon mineral, has been dominantly discovered in some Carlin gold deposits, and minor Sb- Hg, U and Pb-Zn-Ag deposits.展开更多
The Middle-Lower Yangtze River Metallogenic Belt(MLYB)is known to contain abundant copper and iron porphyry-skarn deposits,with an increasing number of tungsten deposits and scheelite in Fe-Cu deposits being discovere...The Middle-Lower Yangtze River Metallogenic Belt(MLYB)is known to contain abundant copper and iron porphyry-skarn deposits,with an increasing number of tungsten deposits and scheelite in Fe-Cu deposits being discovered in the MLYB during recent decades.The ore genesis of the newly-discovered tungsten mineralization in the MLYB is poorly understood.We investigate four sets of scheelite samples from tungsten,iron and copper deposits,using CL imaging and LA-ICP-MS techniques to reveal internal zonation patterns and trace element compositions.The REE distribution patterns of four studied deposits show varying degrees of LREE enrichment with negative Eu anomalies.The oxygen fugacity of ore-forming fluid increased in Donggushan,while the oxygen fugacity of ore-forming fluid decreased in Ruanjiawan,Guilinzheng and Gaojiabang.The scheelites from the Donggushan,Ruanjiawan,Guilinzheng and Gaojiabang deposits show enrichment in LREEs and HFSE,with Nb/La ratios ranging from 1.217 to 52.455,indicating that the four tungsten deposits are enriched in the volatile fluorine.A plot of(La/Lu)N versus Mo/δEu can be used to distinguish quartz vein type,porphyry and skarn tungsten deposits.This study demonstrates that scheelite grains can be used to infer tungsten mineralization and are effective in identifying magmatic types of tungsten deposits in prospective mining sites.展开更多
The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age...The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area.Here,we present new molybdenite Re-Os and titanite and andradite garnet U-Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas.The spatial and paragenetic relationships between the intrusions,alteration,and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite.However,this is not always the case,as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton.This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events.As such,the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area.Previously published zircon U-Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2±1.2 Ma(MSWD=1.4)whereas the Re-Os dating of molybdenite from the study area yielded an isochron age of 137.7±2.5 Ma(MSWD=0.43).The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet,yielding U-Pb ages of 136.3±2.5 Ma(MSWD=3.2)and 135.9±2.7 Ma(MSWD=2.5),respectively.The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma,strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion.The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district.providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area.This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration.This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism,respectively,in areas lacking other dateable minerals(e.g.,molybdenite)or where the relationship between mineralization and magmatism is unclear,for example in areas with multiple stages of magmatism,with complexly zoned plutons,and with distal skarn mineralization.展开更多
The evaluation method, model and process for the flood and waterlogging disaster condition by GIS,RS and GPS technology and the method for setting up disaster condition database, dyke database and historical disaster ...The evaluation method, model and process for the flood and waterlogging disaster condition by GIS,RS and GPS technology and the method for setting up disaster condition database, dyke database and historical disaster damage database are presented. An index of flood damage degree(FDD) used to evaluate the relative degree of disaster loss and divide flood and waterlogging area is suggested. The value of flood damage degree can be calculated as follows :taking the various disaster losses of sample area in a base year as standard value and computing the ratios of various disaster loss values in different areas and years to the standard flood disaster loss values, then summing up the weighted ratios. The computed results are the value of flood damage degree in the every year. The macroscopic flood disaster distribution can be evaluated by the values of flood loss degree.展开更多
Under the tectonodynamic process, crustal materials tend to experience two modes of adjustment: (1) structural (physical) adjustment, manifested by folding, faulting, uplifting, downwarping, etc.: (2) compositional ad...Under the tectonodynamic process, crustal materials tend to experience two modes of adjustment: (1) structural (physical) adjustment, manifested by folding, faulting, uplifting, downwarping, etc.: (2) compositional adjustment, represented by element migration, concentration and dispersion, crystalline and dynamic differentiation of crystals, metamorphism, etc. (Yang Kaiqing. 1986; Yang Kaiqing et al., 1986). The dynamic adjustment of crustal materials in the middle-lower reaches of the Yangtze mainly occurred in the Mesozoic under the conditions of intense collision between the North China (Dabie) massif and the Yangtze massif. The structural adjustment refers to various types of deformation within the two massifs and the intensive shortening of the stratigraphic coyer of the Yangtze massif, whereas the compositional adjustment implies the structural remelting of the basement and the ore. and rock- forming processes in the two massifs.展开更多
Micromotion is the daily tiny vibration of the earth</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s surface. Micromotional exploratio...Micromotion is the daily tiny vibration of the earth</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s surface. Micromotional exploration can use the surface wave information of micro motion to study the shallow structure of underground media. In this study, we collected microtremor data at 68 stations in the Middle-Lower Yangtze Metallogenic Belt (MLYMB) and determined the resonant frequency and obtained the distribution of sedimentary thickness in this area by using H/V spectral ratio. According to the results of H/V, the sedimentary layer in the basin is thick, and the predominant frequency of the basin is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. There are no obvious lateral changes in the impedance interface between bedrock and sedimentary layer in this area. The basement of Tongling, Anqing and Luzhou mining areas and their adjacent areas is Kongling-Dongling type basement, which is composed of a set of metamorphic core complex. The predominant frequency is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. The sedimentary thickness gradually thinned from 3800</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the west to 2100</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the East. Moreover, this article used SPAC (spatial autocorrelation) method to obtain the S-wave velocity structure of the mining area near Luzong. The SPAC method reveals that the depth of the interface between the loose sediments and the volcanic rocks is about 600 m in the study area near the Luzhou mining area in the Middle-Lower Yangtze Metallogenic Belt, and the average depth of the interface between the volcanic rock section and the intrusive complex section is about 1000</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. The thickness of the intrusive rock is more than 2500</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. Tourmaline is developed in the interior of the intrusive rock, which may have better exploration value.展开更多
[Objective] The aim of this study was to characterize the national regis- tered varieties selected from cotton regional trials in Yangtze River Valley (YaRV) in recent years. [Method] Cotton cultivar classification ...[Objective] The aim of this study was to characterize the national regis- tered varieties selected from cotton regional trials in Yangtze River Valley (YaRV) in recent years. [Method] Cotton cultivar classification and comprehensive evaluation index were set up based on national cotton registration standard. GGE biplot method was adopted to analyze the correlation of major breeding target characters of 53 national registered cotton varieties in cotton regional trials in YaRV during 1981-2012. According to the shift of check cultivars in cotton regional trials in the past, the cotton regional trial practice since 1981 was divided into five periods. The dynamic of cultivar type's proportion and the evaluation index scores was analyzed across the five periods. [Result] There existed intricate interrelationship among cotton breeding target traits, which constrained it necessary to construct indices for com- prehensive evaluation of cotton varieties. The dynamic of cultivar types in the five periods indicated that type II varieties emerged since Simian 3 period and then its proportion decreased gradually; type Ⅲ varieties maintained a certain proportion in each period and kept on the rise overall; type Ⅳvarieties occupied the majority pro- portion of registered cultivars before 1993, but a minor proportion since Simian 3 period. On the other side, the change trend of the evaluation index demonstrated that the varieties registered before 2003 did not pass the qualified line at present. The peak scores appeared in the varieties registered during 2004-2008. The scores of the varieties registered after 2009 were only slightly over the qualified line. [Conclusion] More attention should be paid to the improvement and evaluation of micronaire, so as to guide the simultaneous development of high yielding and fiber quality in cotton breeding and registration procedure in YaRV.展开更多
By means of MICAPS data from China Meteorological Administration,the weather dynamics causing precipitation enhancement in the middle and lower Yangtze Valley on January 19,2008 was analyzed.The results showed that th...By means of MICAPS data from China Meteorological Administration,the weather dynamics causing precipitation enhancement in the middle and lower Yangtze Valley on January 19,2008 was analyzed.The results showed that the convergence of cold and warm air was the basic condition of precipitation enhancement,and the influence systems of precipitation enhancement were surface inverse trough,850-700 hPa warm shear and 850-500 hPa low trough,while southwest and southeast low jet were the important dynamic mechanisms of precipitation enhancement,and southwest low jet offered abundant water vapor for precipitation enhancement.展开更多
Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental c...Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeo- flood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedi- mentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern tech- nology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in envi- ronmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.展开更多
In this study, the interannual and interdecadal relationship between midsummer Yangtze River-Huaihe River valley (YHRV) rainfall and the position of the East Asia westerly jet (EAWJ) were investigated. The midsumm...In this study, the interannual and interdecadal relationship between midsummer Yangtze River-Huaihe River valley (YHRV) rainfall and the position of the East Asia westerly jet (EAWJ) were investigated. The midsummer YHRV rainfall was found to significantly increase after the 1980s. Moreover, the location of the EAWJ was found abnormally south of the climatic mean during 1980–2008 (ID2) compared to 1951–1979 (ID1). During ID2, associated with the southward movement of the EAWJ, an anomalous upper-level conver-gence occurred over middle-high latitudes (35° –55° N) and divergence occurred over lower latitudes (~30°N) of East Asia. Correspondingly, anomalous descending and ascending motion was observed in middle-high and lower latitudes along 90°–130° E, respectively, favoring more precipitation over YHRV. On an interan-nual time scale, the EAWJ and YHRV rainfall exhibited similar relationships during the two periods. When the EAWJ was centered abnormally southward, rainfall over YHRV tended to increase. However, EAWJ-related circulations were significantly different during the two periods. During ID1, the circulation of the southward-moving EAWJ exhibited alternating positive–negative–positive distributions from low to middle– high latitudes along the East Asian coast; the most significant anomaly appeared west of the Okhotsk Sea. However, during ID2 the EAWJ was more closely correlated with the tropical and subtropical circulations. Significant differences between ID1 and ID2 were also recorded sea surface temperatures (SSTs). During ID1, the EAWJ was influenced by the extratropical SST over the northern Pacific; however, the EAWJ was more significantly affected by the SST of the tropical western Pacific during ID2.展开更多
It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of E1 Nifio, as demonstrated by the catastrophic flooding suffered in the summer of 1998....It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of E1 Nifio, as demonstrated by the catastrophic flooding suffered in the summer of 1998. Nevertheless, the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998, despite the intensity of the 2016 E1 Nifio having been as strong as that in 1998. A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years, principally in August. The precipitation anomaly was negative in August 2016--different to the positive anomaly of 1998.展开更多
In this study, the major features of a heavy rainfall event in the Yangtze River region on 3-7 June 2011 and its event-related large-scale circulation and predictability were studied. Both observational analysis and m...In this study, the major features of a heavy rainfall event in the Yangtze River region on 3-7 June 2011 and its event-related large-scale circulation and predictability were studied. Both observational analysis and model simulation were used, the latter being based on the Weather Research and Forecasting (WRF) model forced by NCEP Global Forecast System (GFS) datasets. It was found that, during 3-5 June, the western Pacific subtropical high apparently extended to the west and was much stronger, and the Indian summer monsoon trough was slightly weaker than in normal years. The east-west oriented shear line over the middle and lower reaches of the Yangtze River was favorable for the transportation and convergence of water vapor, and the precipitation band was located slightly to the south of the shear line. During 6-7 June, the western Pacific subtropical high retreated eastward, while the trough over the Okhotsk Sea deepened. The low vortex in Northeast China intensified, bringing much more cold air to the middle and lower reaches of the Yangtze River, and the shear line over this area moved slightly southward. The convection band moved southward and became weaker, so the rainfall during 6-7 June weakened and was located slightly to the south of the previous precipitation band. Many of the observed features, including background circulation and the distribution and amount of precipitation, were reproduced reasonably by the WRF, suggesting a feasibility of this model for forecasting extreme weather events in the Yangtze River region.展开更多
This study explores the characteristics of high temperature anomalies over eastern China and associated influencing factors using observations and model outputs.Results show that more long-duration(over 8 days) high...This study explores the characteristics of high temperature anomalies over eastern China and associated influencing factors using observations and model outputs.Results show that more long-duration(over 8 days) high temperature events occur over the middle and lower reaches of the Yangtze River Valley(YRV) than over the surrounding regions,and control most of the interannual variation of summer mean temperature in situ.The synergistic effect of summer precipitation over the South China Sea(SCS) region(18°–27°N,115°–124°E) and the northwestern India and Arabian Sea(IAS) region(18°–27°N,60°–80°E) contributes more significantly to the variation of summer YRV temperature,relative to the respective SCS or IAS precipitation anomaly.More precipitation(enhanced condensational heating) over the SCS region strengthens the western Pacific subtropical high(WPSH) and simultaneously weakens the westerly trough over the east coast of Asia,and accordingly results in associated high temperature anomalies over the YRV region through stimulating an East Asia–Pacific(EAP) pattern.More precipitation over the IAS region further adjusts the variations of the WPSH and westerly trough,and eventually reinforces high temperature anomalies over the YRV region.Furthermore,the condensational heating related to more IAS precipitation can adjust upper-tropospheric easterly anomalies over the YRV region by exciting a circumglobal teleconnection,inducing cold horizontal temperature advection and related anomalous descent,which is also conducive to the YRV high temperature anomalies.The reproduction of the above association in the model results indicates that the above results can be explained both statistically and dynamically.展开更多
With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the correspondi...With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions, the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied. The results show that the positive SSTA in the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer. The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated, and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying El Nino event and also in a La Nina event. However, the different SSTA of different periods in the above three cases play different parts.展开更多
基金the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant No.42175056)+3 种基金the Natural Science Foundation of Shanghai(Grant No.21ZR1457600)Review and Summary Project of China Meteorological Administration(Grant No.FPZJ2023-044)the China Meteorological Administration Innovation and Development Project(Grant No.CXFZ2022J009)the Key Innovation Team of Climate Prediction of the China Meteorological Administration(Grant No.CMA2023ZD03).
文摘In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales.
基金supported financially by the National Natural Science Foundation of China(grant 41302062)the Fundamental Research Funds for the Central Universities(grant 2652015053,2011YYL125)the China Geological Survey(grant 12120113069900)
文摘The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.
文摘The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt, East China, and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting, through the Middle Triassic continent-continent collision to the Jurassic-Cretaceous intracontinental tectono-magmatic activation. The Carboniferous sedimentary-exhalative processes in the area produced widespread massive sulfides with ages of 303-321 Ma, which partly formed massive pyrite-Cu deposits, but mostly provided significant sulfur and metals to the skarn Cu mineralization associated with the Yanshanian felsic intrusions.To understand the Carboniferous submarine hydrothermal system, an area of about 1046 km^2 was chosen to carry out the geological fluid mapping. Associated with massive sulfide formation, footwall sequences 948 m to 1146 m thick, composed of the Lower Silurian-Upper Devonian sandstone, siltstone and thin-layered shale, were widely altered. This hydrothermal alteration is interpreted to reflect largescale hydrothermal fluid flow associated with the late Paleozoic crustal rifting and subsidence. Three hydrothermal alteration types, i.e., deep-level semiconformable siliclfication (S1), fracture-controlled quartz-sericite-pyrite alteration (S2-3), and upper-level sub-discordant quartz-sericite-chlorite alteration (D3), were developed to form distinct zones in the mapped area. About 50-m thick semiconformable silicification zones are located at -1-km depth below massive sulfides and developed between an impermeable shale caprock (S1) and the underlying Ordovician unaltered limestone. Comparisons with modern geothermal systems suggest that the alteration zones record a sub-seafioor aquifer with the most productive hydrothermal fluid flow. Fracture-controlled quartz-sericite-pyrite alteration formed transgressive zones, which downward crosscut the semiconformable alteration zones, and upwards grade into sub-discordant alteration zones that enveloped no economic stringer- stockwork zones beneath massive sulfides. This transgressive zone likely marks an upfiow path of high- flux fluids from the hydrothermal aquifer. Lateral zonation of the sub-discordant alteration zones and their relationship to overlying massive sulfide lenses suggest lateral flows and diffusive discharging of the hydrothermal fluids in a permeable sandstone sequence. Three large-sized, 14 middle-small massive sulfide deposits, and 40 massive sulfide sites have been mapped in detail. They show regional strata- bound characters and two major styles, i.e., the layered sheet plus strata-bound stringer-style and the mound-style. Associated exhalite and chemical sedimentary rock suites include (1) anhydrite-barite, (2) jasper-chert, (3) Mg-rich mudstone-pyrite shale, (4) barite lens, (5) siderite-Fe-bearing dolomite, and (6) Mn-rich shale-mudstone, which usually comprise three sulfide-exhalite cyclic units in the area.The spatial distribution of these alteration zones (minerals) and associated massive sulfdes and exhalites, and regional variation in δ^34S of hydrothermal pyrite and in δ^18O-δ^34C of hanging wall carbonates, suggest three WNW-extending domains of fluid flow, controlled by the basement faults and syn-depositional faults. Each fluid domain appears to have at least two upflow zones, with estimated even spacing of about 5-8 km in the mapped area. The repeated appearance of sulfide-sulfate or sulfide-carbonate rhythmic units in the area suggests episodically venting of fluids through the upfiow conduits by breaking the overlying seals of the hydrothermal aquifer.
基金supported by geological survey projects of the China Geological Survey (1212011120863, 12120114039401, 12120114005901 and 12120115029401)
文摘The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.
基金supported by the National Department Public Benefit Research Foundation of China(grant no. 201211077)the Mineral Resources Investigation and Appraisal Project of the Ministry of Land and Resources (grant no.12120114001501)the Fundamental Research Funds for the Central Universities(grant no. 53200859557)
文摘In the East Asian monsoon region, eolian deposits widely distributed in the middle-lower reaches of the Yantgze River are among the best materials available for studies on Quaternary climate change in the subtropical zone of Southern China. Typical eolian deposits in this region include upper Xiashu Loess (XL) and underlying Vermiculated Red Soil (VRS) layers. In this paper, chronological and paleoclimatic studies are conducted on an eolian deposit sequence near Jiujiang (J J) city in northern Jiangxi province. A magnetostratigraphic study, combined with optically stimulated luminescence (OSL) dating, is conducted on the JJ section and provides further evidence that eolian deposits in the middle-lower reaches of the Yangtze River have been formed since the late Early Pleistocene, and that the boundary age between the XL and VRS layers is about 300-400 kaBP. In grain-size records of the JJ section, the median grain-size and content of the 〉30μn size fraction increase sharply after 300-400 kaBP, representing an East Asian winter monsoon intensification event. Further pollen analysis reveals differing pollen assemblages before and after 300-400 kaBP: there is an evident increase in plants adapted to grow in a warm humid environment after 300-400 kaBP, implying an increase in precipitation caused by intensification of the East Asian summer monsoon. Global ice volume and uplift of the Tibet Plateau (TP) are regarded as crucial factors influencing variations of the East Asian monsoon on a long-term scale. The deep-sea JlSO record, which reflects variations in global ice volume, shows no obvious change after 300-400 kaBP. Moreover, the influence of global ice volume changes on the East Asian summer and winter monsoons is inverse; the global ice volume increase (decrease) implies a strengthened (weakened) winter monsoon and weakened (strengthened) summer monsoon. We therefore interpret the coupled intensifications of the East Asian summer and winter monsoons at about 300-400 kaBP to the uplift of the TP in the Middle Pleistocene. This climate event is also documented in eolian deposits from the southern margin of the Chinese Loess Plateau (CLP) and from the desert-loess transitional belt. However, it is not recorded in the loess-paleosol sequences from the central part of the CLP, thereby indicating differing climate responses to TP uplift in different regions, which requires further study.
文摘The middle-lower Yangtze area underwent a series of complex tectonic evolution, such as Hercynian extensional rifting, Indosinian foreland basining, and Yanshanian transpression-transtension, resulting in a large distinctive Cu-Fe-Au metallogenic belt. In the tectonic evolution, large-scale migration and convergence of fluids toward foreland basins induced during the collisional orogeny of the Yangtze and North China continental blocks were of vital importance for the formation of the metallogenic belt. Through geological surveys of the middle-lower Yangtze area, three lines of evidence of large-scale fluid migration are proposed: (1) The extensive dolomitic and silicic alteration penetrating Cambrian-Triassic strata generally occurs in a region sandwiched between the metallogenic belt along the Yangtze River and the Dabie orogenic belt, and in the alteration domain alternately strong and weak alteration zones extend in a NW direction and are controlled by the fault system of the Dabie orogenic belt; it might record the locus of the activities of long-distance migrating fluids. (2) The textures and structures of very thick Middle-Lower Triassic anhydrock sequences in restricted basins along the river reveal the important contribution of the convergence of regional hot brine in restricted basins and the chemical deposition or their formation. (3) Early-Middle Triassic syndepositional iron carbonate sequences and Fe-Cu-Pb-Zn massive sulfide deposits alternate with anhydrock sequences or are separated from the latter, but all of them occur in the same stratigraphic horizon and are intimately associated with each other, being the product of syndeposition of high-salinity hot brine. According to the geological surveys, combined with previous data, the authors propose a conceptual model of fluid migration-convergence and mineralization during the Dabie collisional orogeny.
基金supported by the National Science Foundation of China(grants No.41372090 and 41573042)the National Special Research Programs for Non-Profit Trades (grant No.201311136)Basic Scientific Research Operation Cost of State-Leveled Public Welfare Scientific Research Courtyard(grant No.K1203)
文摘Thallium has been used geochemical exploration of gold deposits. However, as an indicator element in searching for hydrothermal the T1 minerals and mineralization are rare in nature. Lorandite T1AsS2, a relatively uncommon mineral, has been dominantly discovered in some Carlin gold deposits, and minor Sb- Hg, U and Pb-Zn-Ag deposits.
基金funded by grants from the National Key Research and Development Program(2016YFC0600206)the National Natural Science Foundation of China(41872081)+1 种基金the Doctoral initial funding project of Anhui Jianzhu University(2019QDZ33)the Anhui Province Science and Technology Plan Project for Housing Urban-rural Construction(2020-YF35)。
文摘The Middle-Lower Yangtze River Metallogenic Belt(MLYB)is known to contain abundant copper and iron porphyry-skarn deposits,with an increasing number of tungsten deposits and scheelite in Fe-Cu deposits being discovered in the MLYB during recent decades.The ore genesis of the newly-discovered tungsten mineralization in the MLYB is poorly understood.We investigate four sets of scheelite samples from tungsten,iron and copper deposits,using CL imaging and LA-ICP-MS techniques to reveal internal zonation patterns and trace element compositions.The REE distribution patterns of four studied deposits show varying degrees of LREE enrichment with negative Eu anomalies.The oxygen fugacity of ore-forming fluid increased in Donggushan,while the oxygen fugacity of ore-forming fluid decreased in Ruanjiawan,Guilinzheng and Gaojiabang.The scheelites from the Donggushan,Ruanjiawan,Guilinzheng and Gaojiabang deposits show enrichment in LREEs and HFSE,with Nb/La ratios ranging from 1.217 to 52.455,indicating that the four tungsten deposits are enriched in the volatile fluorine.A plot of(La/Lu)N versus Mo/δEu can be used to distinguish quartz vein type,porphyry and skarn tungsten deposits.This study demonstrates that scheelite grains can be used to infer tungsten mineralization and are effective in identifying magmatic types of tungsten deposits in prospective mining sites.
基金financially supported by funds from the National Key R&D Program of China(Grant Nos.2016YFC0600209,2016YFC0600206)the National Natural Science Foundation of China(Grant No.41820104007)+1 种基金the Scientific and Technological Program of Land and Resources of Anhui province(Grant No.2016-K-4)the China Scholarship Council(Grant No.201906690036)。
文摘The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area.Here,we present new molybdenite Re-Os and titanite and andradite garnet U-Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas.The spatial and paragenetic relationships between the intrusions,alteration,and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite.However,this is not always the case,as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton.This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events.As such,the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area.Previously published zircon U-Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2±1.2 Ma(MSWD=1.4)whereas the Re-Os dating of molybdenite from the study area yielded an isochron age of 137.7±2.5 Ma(MSWD=0.43).The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet,yielding U-Pb ages of 136.3±2.5 Ma(MSWD=3.2)and 135.9±2.7 Ma(MSWD=2.5),respectively.The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma,strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion.The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district.providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area.This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration.This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism,respectively,in areas lacking other dateable minerals(e.g.,molybdenite)or where the relationship between mineralization and magmatism is unclear,for example in areas with multiple stages of magmatism,with complexly zoned plutons,and with distal skarn mineralization.
文摘The evaluation method, model and process for the flood and waterlogging disaster condition by GIS,RS and GPS technology and the method for setting up disaster condition database, dyke database and historical disaster damage database are presented. An index of flood damage degree(FDD) used to evaluate the relative degree of disaster loss and divide flood and waterlogging area is suggested. The value of flood damage degree can be calculated as follows :taking the various disaster losses of sample area in a base year as standard value and computing the ratios of various disaster loss values in different areas and years to the standard flood disaster loss values, then summing up the weighted ratios. The computed results are the value of flood damage degree in the every year. The macroscopic flood disaster distribution can be evaluated by the values of flood loss degree.
文摘Under the tectonodynamic process, crustal materials tend to experience two modes of adjustment: (1) structural (physical) adjustment, manifested by folding, faulting, uplifting, downwarping, etc.: (2) compositional adjustment, represented by element migration, concentration and dispersion, crystalline and dynamic differentiation of crystals, metamorphism, etc. (Yang Kaiqing. 1986; Yang Kaiqing et al., 1986). The dynamic adjustment of crustal materials in the middle-lower reaches of the Yangtze mainly occurred in the Mesozoic under the conditions of intense collision between the North China (Dabie) massif and the Yangtze massif. The structural adjustment refers to various types of deformation within the two massifs and the intensive shortening of the stratigraphic coyer of the Yangtze massif, whereas the compositional adjustment implies the structural remelting of the basement and the ore. and rock- forming processes in the two massifs.
文摘Micromotion is the daily tiny vibration of the earth</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s surface. Micromotional exploration can use the surface wave information of micro motion to study the shallow structure of underground media. In this study, we collected microtremor data at 68 stations in the Middle-Lower Yangtze Metallogenic Belt (MLYMB) and determined the resonant frequency and obtained the distribution of sedimentary thickness in this area by using H/V spectral ratio. According to the results of H/V, the sedimentary layer in the basin is thick, and the predominant frequency of the basin is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. There are no obvious lateral changes in the impedance interface between bedrock and sedimentary layer in this area. The basement of Tongling, Anqing and Luzhou mining areas and their adjacent areas is Kongling-Dongling type basement, which is composed of a set of metamorphic core complex. The predominant frequency is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. The sedimentary thickness gradually thinned from 3800</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the west to 2100</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the East. Moreover, this article used SPAC (spatial autocorrelation) method to obtain the S-wave velocity structure of the mining area near Luzong. The SPAC method reveals that the depth of the interface between the loose sediments and the volcanic rocks is about 600 m in the study area near the Luzhou mining area in the Middle-Lower Yangtze Metallogenic Belt, and the average depth of the interface between the volcanic rock section and the intrusive complex section is about 1000</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. The thickness of the intrusive rock is more than 2500</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. Tourmaline is developed in the interior of the intrusive rock, which may have better exploration value.
基金Supported by Key Special Project for Breeding and Cultivation of GMO Varieties(2012ZX08013015)Jiangsu Agriculture Science and Technology Innovation Fund(JASTIF,CX-12-5035)~~
文摘[Objective] The aim of this study was to characterize the national regis- tered varieties selected from cotton regional trials in Yangtze River Valley (YaRV) in recent years. [Method] Cotton cultivar classification and comprehensive evaluation index were set up based on national cotton registration standard. GGE biplot method was adopted to analyze the correlation of major breeding target characters of 53 national registered cotton varieties in cotton regional trials in YaRV during 1981-2012. According to the shift of check cultivars in cotton regional trials in the past, the cotton regional trial practice since 1981 was divided into five periods. The dynamic of cultivar type's proportion and the evaluation index scores was analyzed across the five periods. [Result] There existed intricate interrelationship among cotton breeding target traits, which constrained it necessary to construct indices for com- prehensive evaluation of cotton varieties. The dynamic of cultivar types in the five periods indicated that type II varieties emerged since Simian 3 period and then its proportion decreased gradually; type Ⅲ varieties maintained a certain proportion in each period and kept on the rise overall; type Ⅳvarieties occupied the majority pro- portion of registered cultivars before 1993, but a minor proportion since Simian 3 period. On the other side, the change trend of the evaluation index demonstrated that the varieties registered before 2003 did not pass the qualified line at present. The peak scores appeared in the varieties registered during 2004-2008. The scores of the varieties registered after 2009 were only slightly over the qualified line. [Conclusion] More attention should be paid to the improvement and evaluation of micronaire, so as to guide the simultaneous development of high yielding and fiber quality in cotton breeding and registration procedure in YaRV.
文摘By means of MICAPS data from China Meteorological Administration,the weather dynamics causing precipitation enhancement in the middle and lower Yangtze Valley on January 19,2008 was analyzed.The results showed that the convergence of cold and warm air was the basic condition of precipitation enhancement,and the influence systems of precipitation enhancement were surface inverse trough,850-700 hPa warm shear and 850-500 hPa low trough,while southwest and southeast low jet were the important dynamic mechanisms of precipitation enhancement,and southwest low jet offered abundant water vapor for precipitation enhancement.
基金supported by the Nalional Natural Science Foundation of China(Grant Nos.40971115,and 41171163)Scientific Research Foundation of Graduate School of Nanjing University (Grant No.2011CL11)+2 种基金National Key Technology R&D Program of China(Grant No.2010BAK67B02)University Doctoral Foundation of China(Grant No.20090091110036)Open Foundation of the State Key Laboratory of Loess and Quaternary Geology,and the Institute of Earth Enviroment,CAS(Grant No. S KLLQG0817)
文摘Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeo- flood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedi- mentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern tech- nology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in envi- ronmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.
基金supported by the National Basic Research Program of China (No. 2009CB421401)the National Natural Science Foundation of China (No. 40975022)+1 种基金the Special funds for Meteorology scientific research on public causes (No. GYHY200906014)the National Science and Technology Support Program of China (No.2007BAC29B03)
文摘In this study, the interannual and interdecadal relationship between midsummer Yangtze River-Huaihe River valley (YHRV) rainfall and the position of the East Asia westerly jet (EAWJ) were investigated. The midsummer YHRV rainfall was found to significantly increase after the 1980s. Moreover, the location of the EAWJ was found abnormally south of the climatic mean during 1980–2008 (ID2) compared to 1951–1979 (ID1). During ID2, associated with the southward movement of the EAWJ, an anomalous upper-level conver-gence occurred over middle-high latitudes (35° –55° N) and divergence occurred over lower latitudes (~30°N) of East Asia. Correspondingly, anomalous descending and ascending motion was observed in middle-high and lower latitudes along 90°–130° E, respectively, favoring more precipitation over YHRV. On an interan-nual time scale, the EAWJ and YHRV rainfall exhibited similar relationships during the two periods. When the EAWJ was centered abnormally southward, rainfall over YHRV tended to increase. However, EAWJ-related circulations were significantly different during the two periods. During ID1, the circulation of the southward-moving EAWJ exhibited alternating positive–negative–positive distributions from low to middle– high latitudes along the East Asian coast; the most significant anomaly appeared west of the Okhotsk Sea. However, during ID2 the EAWJ was more closely correlated with the tropical and subtropical circulations. Significant differences between ID1 and ID2 were also recorded sea surface temperatures (SSTs). During ID1, the EAWJ was influenced by the extratropical SST over the northern Pacific; however, the EAWJ was more significantly affected by the SST of the tropical western Pacific during ID2.
基金supported by the National Natural Science Foundation of China (Grant Nos.41320104007,U1502233,41675078 and 41461164005)
文摘It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of E1 Nifio, as demonstrated by the catastrophic flooding suffered in the summer of 1998. Nevertheless, the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998, despite the intensity of the 2016 E1 Nifio having been as strong as that in 1998. A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years, principally in August. The precipitation anomaly was negative in August 2016--different to the positive anomaly of 1998.
基金supported by the Major State Basic Research Development Program of China(973Program) under Grant No.2009CB421406the National Natural Science Foundation of China under Grant Nos.41130103 and 40821092the Norwegian Research Council"East Asia DecCen"Project
文摘In this study, the major features of a heavy rainfall event in the Yangtze River region on 3-7 June 2011 and its event-related large-scale circulation and predictability were studied. Both observational analysis and model simulation were used, the latter being based on the Weather Research and Forecasting (WRF) model forced by NCEP Global Forecast System (GFS) datasets. It was found that, during 3-5 June, the western Pacific subtropical high apparently extended to the west and was much stronger, and the Indian summer monsoon trough was slightly weaker than in normal years. The east-west oriented shear line over the middle and lower reaches of the Yangtze River was favorable for the transportation and convergence of water vapor, and the precipitation band was located slightly to the south of the shear line. During 6-7 June, the western Pacific subtropical high retreated eastward, while the trough over the Okhotsk Sea deepened. The low vortex in Northeast China intensified, bringing much more cold air to the middle and lower reaches of the Yangtze River, and the shear line over this area moved slightly southward. The convection band moved southward and became weaker, so the rainfall during 6-7 June weakened and was located slightly to the south of the previous precipitation band. Many of the observed features, including background circulation and the distribution and amount of precipitation, were reproduced reasonably by the WRF, suggesting a feasibility of this model for forecasting extreme weather events in the Yangtze River region.
基金the support of the National Natural Science Foundation of China(Grant Nos.41375090 and 41375091)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(Grant Nos.2013Z002 and 2015Z001)the support of a Direct Grant of the Chinese University of Hong Kong(Grant No.4052057)
文摘This study explores the characteristics of high temperature anomalies over eastern China and associated influencing factors using observations and model outputs.Results show that more long-duration(over 8 days) high temperature events occur over the middle and lower reaches of the Yangtze River Valley(YRV) than over the surrounding regions,and control most of the interannual variation of summer mean temperature in situ.The synergistic effect of summer precipitation over the South China Sea(SCS) region(18°–27°N,115°–124°E) and the northwestern India and Arabian Sea(IAS) region(18°–27°N,60°–80°E) contributes more significantly to the variation of summer YRV temperature,relative to the respective SCS or IAS precipitation anomaly.More precipitation(enhanced condensational heating) over the SCS region strengthens the western Pacific subtropical high(WPSH) and simultaneously weakens the westerly trough over the east coast of Asia,and accordingly results in associated high temperature anomalies over the YRV region through stimulating an East Asia–Pacific(EAP) pattern.More precipitation over the IAS region further adjusts the variations of the WPSH and westerly trough,and eventually reinforces high temperature anomalies over the YRV region.Furthermore,the condensational heating related to more IAS precipitation can adjust upper-tropospheric easterly anomalies over the YRV region by exciting a circumglobal teleconnection,inducing cold horizontal temperature advection and related anomalous descent,which is also conducive to the YRV high temperature anomalies.The reproduction of the above association in the model results indicates that the above results can be explained both statistically and dynamically.
文摘With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions, the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied. The results show that the positive SSTA in the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer. The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated, and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying El Nino event and also in a La Nina event. However, the different SSTA of different periods in the above three cases play different parts.