Ekeland’s variational principle is a fundamental theorem in nonconves analysis. Its general statement is as the following:Ekeland’s Variational Principle"’a:. Let V be a complete metric space, and F: F—*-RU{ ...Ekeland’s variational principle is a fundamental theorem in nonconves analysis. Its general statement is as the following:Ekeland’s Variational Principle"’a:. Let V be a complete metric space, and F: F—*-RU{ + °°} a lower semicontinuous function, not identically +00 and bounded from, below. Let s>0 be given, and a point u^V such thatF(u)<infF+e.vThen there exists some point v £ V such that展开更多
In this paper, we consider the existence of positive solutions of the semlinear elliptic boundary value problem with convex and concave nonlinearities, the results obtained improve and generalize some known results.
文摘Ekeland’s variational principle is a fundamental theorem in nonconves analysis. Its general statement is as the following:Ekeland’s Variational Principle"’a:. Let V be a complete metric space, and F: F—*-RU{ + °°} a lower semicontinuous function, not identically +00 and bounded from, below. Let s>0 be given, and a point u^V such thatF(u)<infF+e.vThen there exists some point v £ V such that
文摘In this paper, we consider the existence of positive solutions of the semlinear elliptic boundary value problem with convex and concave nonlinearities, the results obtained improve and generalize some known results.